

Carbon Clinic 3

Scope 3, Part 2: Fuel- and energy- related activities, waste, business travel, employee commuting, leased assets, investments, carbon offsets

Carbon Clinic Overview

Scope 3 Overview, Tools, and Resources

Implementation: Providence

Implementation: Cleveland Clinic

Questions & Answers

Agenda

The Carbon Clinic Series

1 2 Clinic 1: Scopes 1&2

Understanding the basics Scope 1 and 2

Speakers

- Jon Utech, Cleveland Clinic
- Seema Wadhwa, *Kaiser Permanente*
- Matthew St. Claire & Seema Gandhi, UC Health

3

Clinic 2: Scope 3

Purchased goods & services / supply chain, capital goods, upstream and downstream transportation, use of sold products

<u>Speakers</u>

- Jodi Sherman, Yale
- Beth Schenk, *Providence*
- Matthew Eckelman, Northeastern University

3

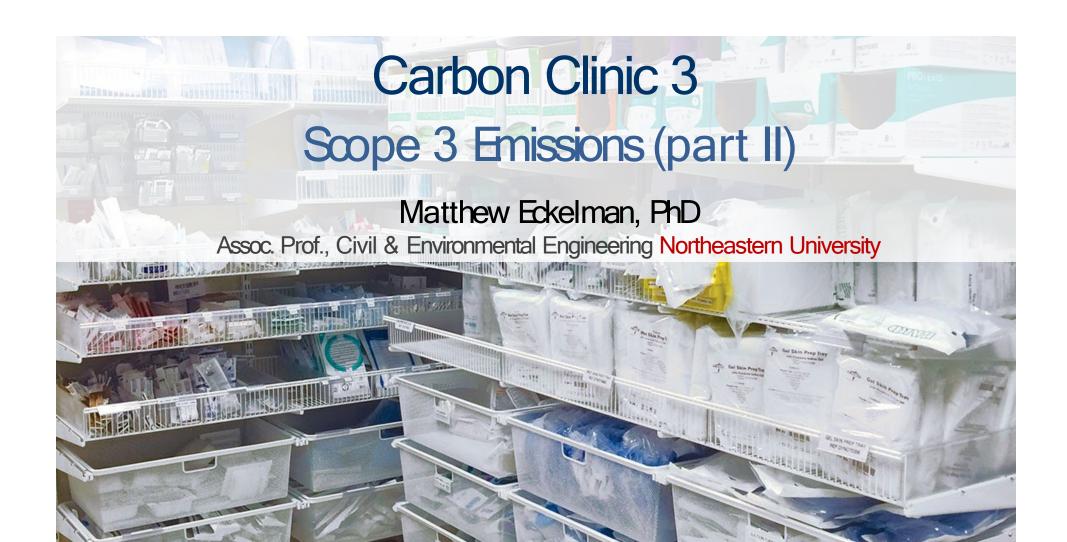
Clinic 3: Scope 3 con't

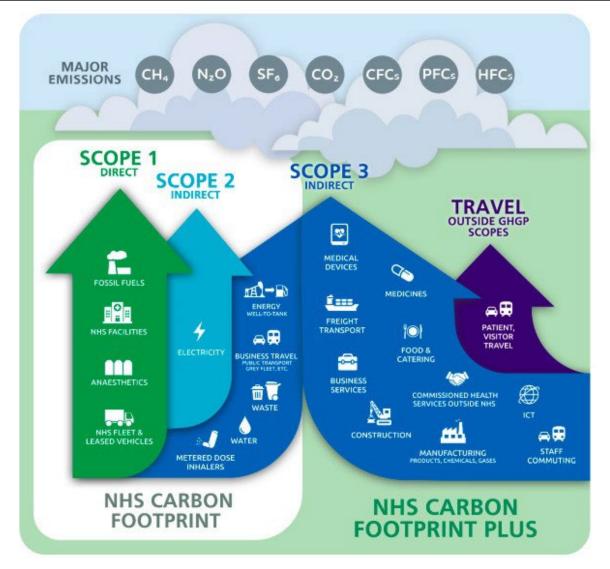
Fuel- and energy- related activities, waste, business travel, employee commuting, leased assets, investments, carbon offsets

<u>Speakers</u>

- Matthew Eckelman, Northeastern University
- Beth Schenk, *Providence*
- Jon Utech, Cleveland Clinic

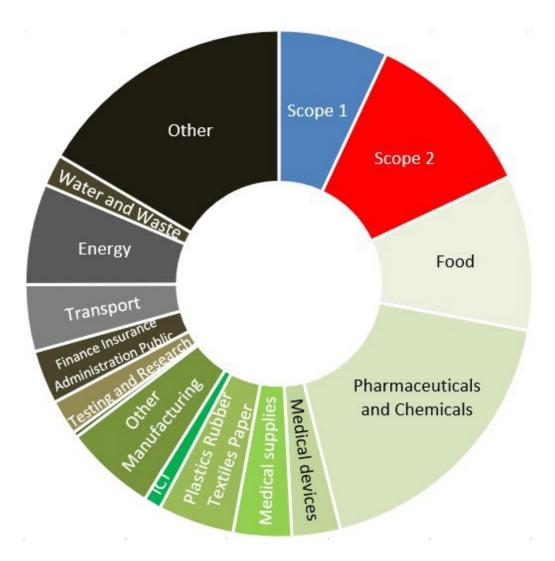
Speakers


- Matthew Eckelman, Northeastern University
- Beth Schenk, *Providence*
- Jon Utech, Cleveland Clinic

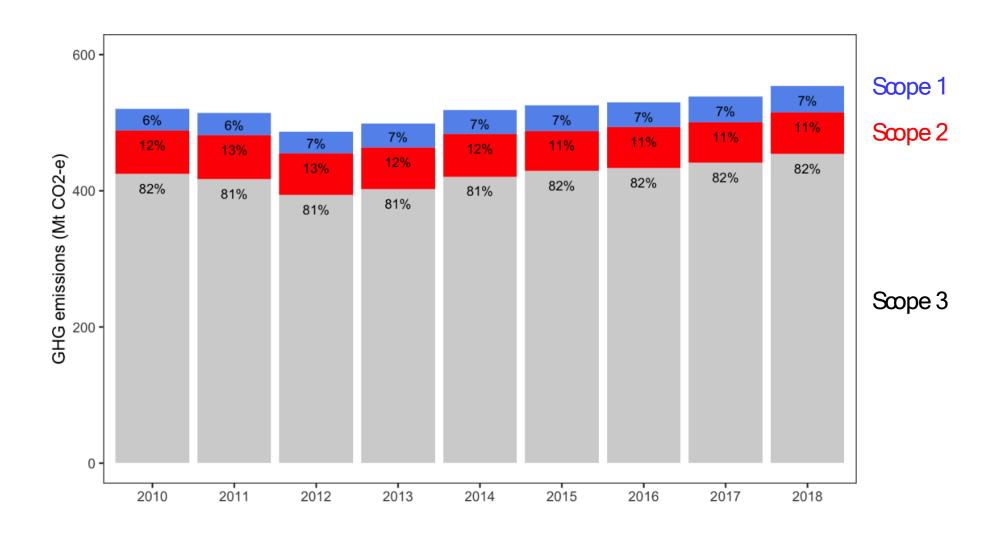


Carbon Footprint of Health Care

What are Scope 3 Emissions?

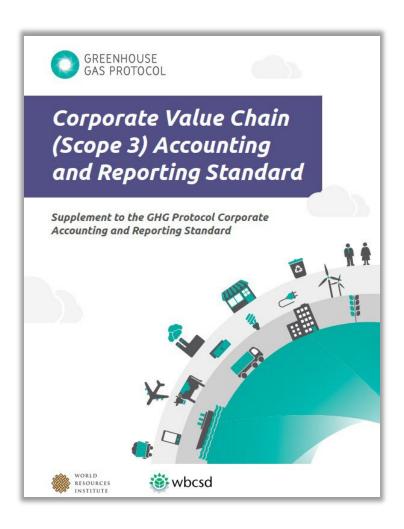


"Indirect" Emissions in the Value Chain


(spatially distributed, huge variety)

U.S. Health Care GHG Emission Contributions

U.S. Health Care GHG Emission Trends


Scope 3 Categories

Upstream

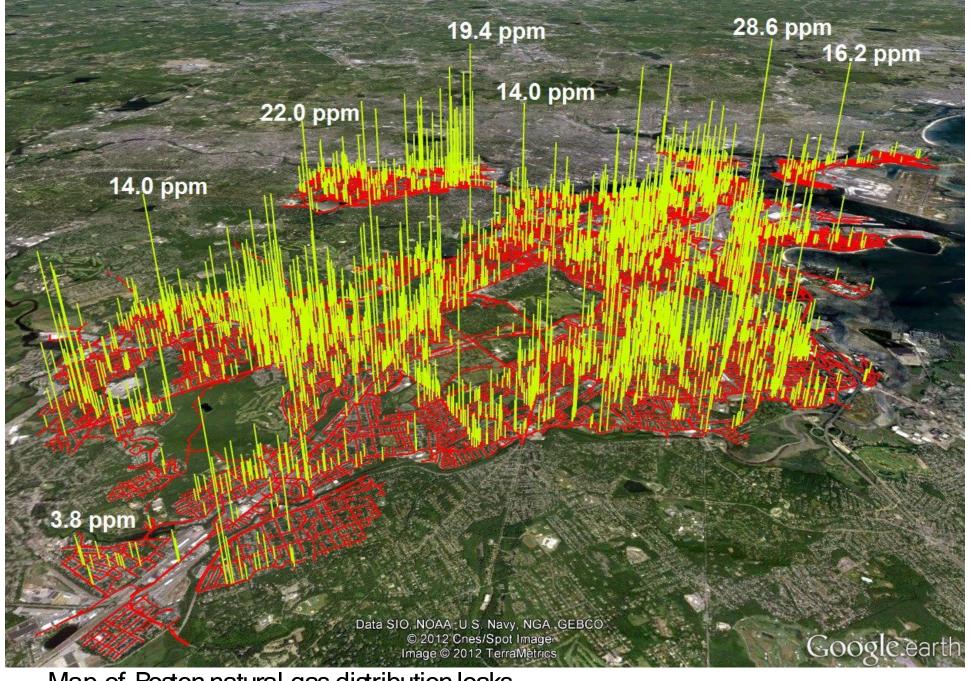
- Purchased Goods & Services
- Capital Goods
- Upstream Fuel & Energy
- Upstream Transp. & Distribution
- Waste
- Business Travel
- Employee Commuting
- Upstream Leased Assets

Downstream

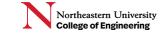
- Downstream Transp. & Distribution
- Processing of Sold Products
- Use of Sold Products
- End-of-Life of Sold Products
- Downstream Leased Assets
- Franchises
- Investments

Category description

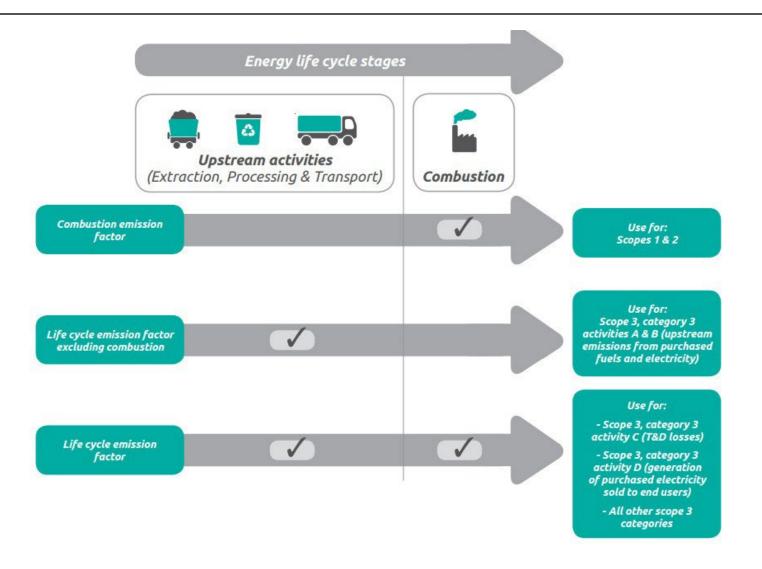
his category includes emissions related to the production of fuels and energy purchased and consumed by the reporting company in the reporting year that are not included in scope 1 or scope 2.


Bucket wheel excavator (Getty)

Oil rig gas flaring (Britannica)



Map of Boston natural gas distribution leaks (Phillips et al. Environmental Pollution 2012)



Electricity Transmission & Distribution (T&D) or "line losses" (wikipedia)

Activity	Description	Applicability
A. Upstream emissions of purchased fuels	Extraction, production, and transportation of fuels consumed by the reporting company Examples include mining of coal, refining of gasoline, transmission and distribution of natural gas, production of biofuels, etc.	Applicable to end users of fuels
B. Upstream emissions of purchased electricity	Extraction, production, and transportation of fuels consumed in the generation of electricity, steam, heating, and cooling that is consumed by the reporting company Examples include mining of coal, refining of fuels, extraction of natural gas, etc.	Applicable to end users of electricity, steam, heating, and cooling
C. Transmission and distribution (T&D) losses	Generation (upstream activities and combustion) of electricity, steam, heating, and cooling that is consumed (i.e., lost) in a T&D system – reported by end user	Applicable to end users of electricity, steam, heating, and cooling
D. Generation of purchased electricity that is sold to end users	Generation (upstream activities and combustion) of electricity, steam, heating, and cooling that is purchased by the reporting company and sold to end users – reported by utility company or energy retailer Note: This activity is particularly relevant for utility companies that purchase wholesale electricity supplied by independent power producers for resale to their customers.	Applicable to utility companies and energy retailers*

Step 1. Determine fuel and electricity purchases from Scopes 1 and 2 reporting

Step 2. Collect emissions factors

- For energy production- USEPA recommends using upstream emissions factors ("well-to-tank" or WTT) from the UK:
 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1083855/ghg-conversion-factors-2022-full-set.xls
- For electricity T&D- USEPApublishes T&D loss factors for each US region, combine with electricity carbon emissions factors (from Scope 2)
 https://www.epa.gov/system/files/documents/2022-01/egrid2020 summary tables.pdf

Step 3. Multiply for each 'energy carrier'

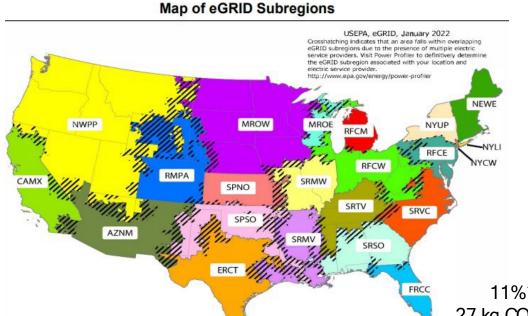
Natural Gas Upstream Emissions Example.

Step 1. My facility uses 1 million cubic meters of natural gas annually.

Step 2. Find WTT emissions factor:

Activity	Fuel	Unit	Total kg CO₂e per unit
	Butane	tonnes	342.14737
		litres	0.19686
		kWh (Net CV)	0.02719
		kWh (Gross CV)	0.02509
		tonnes	537.6183
	CNG	litres	0.09408
	CIVG	kWh (Net CV)	0.04282
		kWh (Gross CV)	0.03865
		tonnes	885.68706
	LNG	litres	0.40076
		kWh (Net CV)	0.07055
		kWh (Gross CV)	0.06367
Gaseous fuels		tonnes	347.0093
	LPG	litres	0.18383
	LFG	kWh (Net CV)	0.02719
		kWh (Gross CV)	0.02532
		tonnes	/32 586/5
	Natural gas	cubic metres	0.3434
	Ivaturar gas	kWh (Net CV)	0.03446
		kWh (Gross CV)	0.0311

Step 3. Multiply:


 $(1 \text{ million } m^3)^*(0.343 \text{ kg } CO_2e/m^3) / 1000 \text{ kg/ton} = 343 \text{ tons } CO_2e$

Bectricity Upstream Emissions Example.

Step 1. My facility uses 1 million kWh of electricity annually.

Step 2. Find upstream emissions factor (US average of ~11% of direct EF):

eGRID		put emiss lb/MWh	
subregion acronym	eGRID subregion name	CO ₂ e	
AKGD	ASCC Alaska Grid	1,104.2	
AKMS	ASCC Miscellaneous	536.1	
AZNM	WECC Southwest	850.2	
CAMX	WECC California	515.5	
ERCT	ERCOT All	822.0	
FRCC	FRCC All	838.2	
HIMS	HICC Miscellaneous	1,151.1	
HIOA	HICC Oahu	1,665.5	
MROE	MRO East	1,535.8	
MROW	MRO West	986.6	
NEWE	NPCC New England	533.0	
NWPP	WECC Northwest	603.8	
NYCW	NPCC NYC/Westchester	636.0	

11%*533 lb/MWh / 2.2 kg/lb = 27 kg CO2e/ MWh = **0.027 kg CO2e/ kWh**

Step 3. Multiply:


 $(1 \text{ million kWh})^*(0.027 \text{ kg CO}_2\text{e/m}^3) / 1000 \text{ kg/ton} = 27 \text{ tons CO}_2\text{e}$

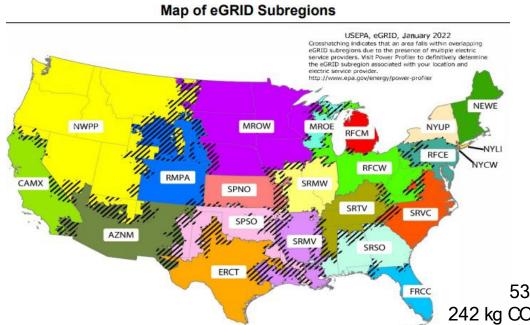
Bectricity T&D losses Example.

Step 1. My facility uses 1 million kWh of electricity annually.

Step 2a. Find T&D grid loss factor from USEPA:

(GGL)

eGRID subregion acronym	eGRID subregion name	Grid Gross Loss (%)
AKGD	ASCC Alaska Grid	5.5%
AKMS	ASCC Miscellaneous	5.5%
AZNM	WECC Southwest	5.3%
CAMX	WECC California	5.3%
ERCT	ERCOT All	5.2%
FRCC	FRCC All	5.3%
HIMS	HICC Miscellaneous	5.6%
HIOA	HICC Oahu	5.6%
MROE	MRO East	5.3%
MROW	MRO West	5.3%
NEWE	NPCC New England	5.3%
NWPP	WECC Northwest	5.3%
NYCW	NPCC NYC/Westchester	5.3%
NYLI	NPCC Long Island	5.3%
NYUP	NPCC Upstate NY	5.3%
PRMS	Puerto Rico Miscellaneou	0.0%
RFCE	RFC East	5.3%
RFCM	RFC Michigan	5.3%
RFCW	RFC West	5.3%
RMPA	WECC Rockies	5.3%
SPNO	SPP North	5.3%
SPSO	SPP South	5.3%
SRMV	SERC Mississippi Valley	5.3%
SRMW	SERC Midwest	5.3%
SRSO	SERC South	5.3%
SRTV	SERC Tennessee Valley	5.3%
SRVC	SERC Virginia/Carolina	5.3%
U.S.		5.3%


Step 2b. Find loss rate:

Northeastern University College of Engineering

Step 2c. Calculate total T&D losses

(1 million kWh)*(0.056 kWh/kWh) = 56,000 kWh

Step 2d. Find electricity emissions factor from USEPA

_			
eGRID		put emiss lb/MWh	
subregion acronym	eGRID subregion name	CO ₂ e	
AKGD	ASCC Alaska Grid	1,104.2	
AKMS	ASCC Miscellaneous	536.1	
AZNM	WECC Southwest	850.2	
CAMX	WECC California	515.5	
ERCT	ERCOT All	822.0	
FRCC	FRCC All	838.2	
HIMS	HICC Miscellaneous	1,151.1	
HIOA	HICC Oahu	1,665.5	
MROE	MRO East	1,535.8	
MROW	MRO West	986.6	
NEWE	NPCC New England	533.0	
NWPP	WECC Northwest	603.8	
NYCW	NPCC NYC/Westchester	636.0	

533 lb/MWh / 2.2 kg/lb = 242 kg CO2e/ MWh = **0.242 kg CO2e/ kWh**

Step 2e. Combine with upstream #Ffor electricity: 0.242+0.027 = 0.269 kg CO2e/kWh

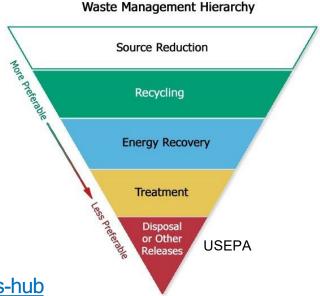
Step 3. Multiply: (56,000 kWh)*(0.269 kg CO2e/kWh) / 1000 = **15 tons CO2e**

Scope 3: Waste

Category description

ategory 5 includes emissions from third-party disposal and treatment of waste generated in the reporting company's owned or controlled operations in the reporting year. This category includes emissions from disposal of both solid waste and wastewater.

 Treatment and disposal of both liquid and solid wastes can produce GHGs through combustion or decomposition



Scope 3: Waste

(follow same directions as for Waste Mgmt. (*Category 12*)

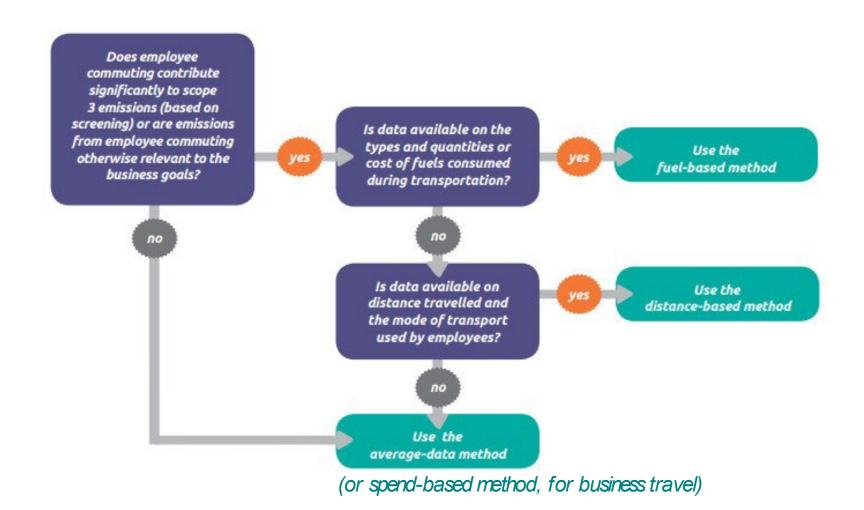
- Estimate material quantities types
- Determine prevalent treatment/disposal method
- □ Use USEPA emissions factors:

 https://www.epa.gov/climateleadership/ghg-emission-factors-hub

Scope 3: Business Travel & Employee Commuting

Category description

his category includes emissions from the transportation of employees for businessrelated activities in vehicles owned or operated by third parties, such as aircraft, trains, buses, and passenger cars.


Category description

This category includes emissions from the transportation of employees⁴ between their homes and their worksites. Emissions from employee commuting may arise from:

- Automobile travel
- Bus travel
- Rail travel
- Air travel
- · Other modes of transportation (e.g., subway, bicycling, walking).

Companies may include emissions from teleworking (i.e., employees working remotely) in this category.

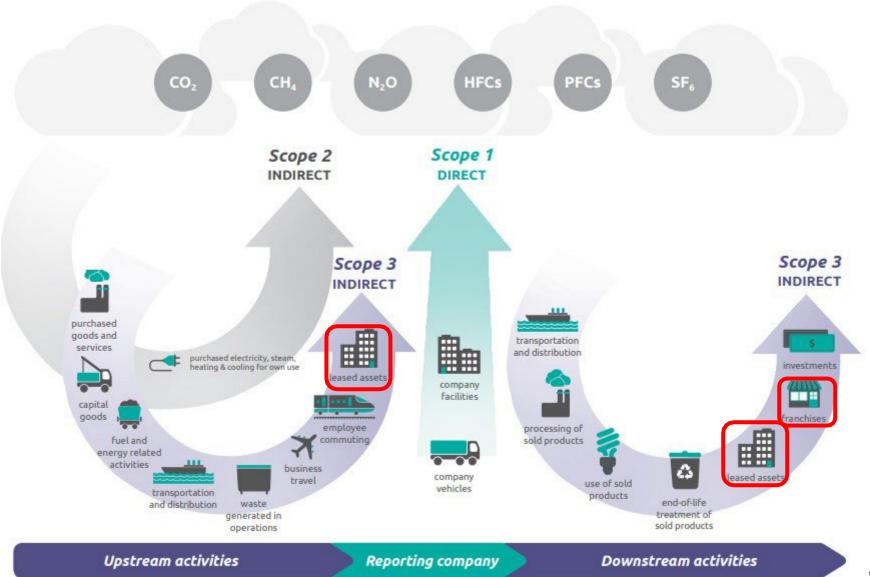
Scope 3: Business Travel & Employee Commuting

Scope 3: Business Travel & Employee Commuting

Train Travel Example.

Step 1. My employees travel 10,000 miles by train on the East Coast annually

Step 2. Use USEPA emissions factor:


Vehicle Type	CO₂ Factor (kg / unit)	CH₄ Factor (g / unit)	N₂O Factor (g / unit)	Units
Passenger Car ^A	0.332	0.007	0.007	vehicle-mile
Light-Duty Truck B	0.454	0.012	0.009	vehicle-mile
Motorcycle	0.183	0.070	0.007	vehicle-mile
Intercity Rail - Northeast Corridor ^C	0.058	0.0055	0.0007	passenger-mile
Intercity Rail - Other Routes ^C	0.150	0.0117	0.0038	passenger-mile
Intercity Rail - National Average C	0.113	0.0092	0.0026	passenger-mile
Commuter Rail D	0.139	0.0112	0.0028	passenger-mile
Transit Rail (i.e. Subway, Tram) E	0.099	0.0084	0.0012	passenger-mile
Bus	0.056	0.0210	0.0009	passenger-mile
Air Travel - Short Haul (< 300 miles)	0.207	0.0064	0.0066	passenger-mile
Air Travel - Medium Haul (>= 300				
miles,				
< 2300 miles)	0.129	0.0006	0.0041	passenger-mile
Air Travel - Long Haul (>= 2300 mile	0.163	0.0006	0.0052	passenger-mile

Step 3. Multiply:

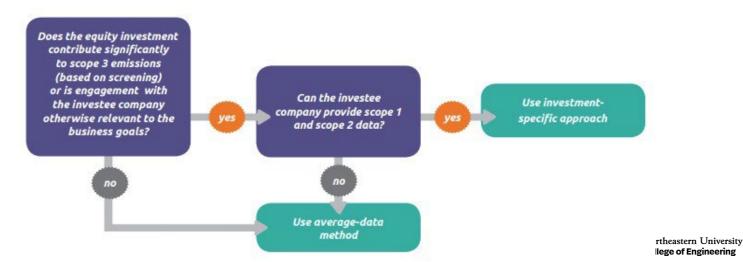
(10,000 miles)*[0.058+(0.0055)*(25)/1000+(0.0007)*(298)/1000]=583 kg CO₂e

Scope 3: Up/Downstream Leased Assets & Franchises

Scope 3: Up/Downstream Leased Assets & Franchises

- Just like normal Scopes 1 and 2 accounting, but instead based on operations of properties/items you lease to or from others
- Collect data on:
 - Fuel and electricity use
 - Pefrigerant leakage emissions (from averages)
 - Waste anaesthetic gas emissions
- □ Use USEPA emissions factors:

https://www.epa.gov/climateleadership/ghg-emission-factors-hub


Category description

his category includes scope 3 emissions associated with the reporting company's investments in the reporting year, not already included in scope 1 or scope 2. This category is applicable to investors (i.e., companies that make an investment with the objective of making a profit) and companies that provide financial services. This category also applies to investors that are not profit driven (e.g. multilateral development banks), and the same calculation methods should be used. Investments are categorized as a downstream scope 3 category because providing capital or financing is a service provided by the reporting company.

- Types of investments to assess:
 - Equity (required)
 - Debt (required if for a known project, optional if unknown)
 - Project finance (required)
 - Managed investments (optional)
- Two approaches: investment-specific or average, based on share of your investment in the total

Investments Example: Investment-Specific

Step 1a. My HCO's employee retirement fund invests \$10M in Coca-Cola

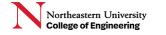
Step 1b. Find share of Coca-Cola total equity:

Total market cap: \$206,490M, equity share = 0.0048%

- **Step 2.** Find Coca-Cola annual emissions (from Carbon Disclosure Project): 793,460 tons (Scope 1) 747,876 tons (Scope 2) = 1,541,336 tons
- **Step 3.** Find share of Coca-Cola emissions due to investment: (0.0048%)*(1,541,336 tons) = **74.6 tons CO2e**

Investments Example: Average Data

Step 1a. My HCO's employee retirement fund invests \$10M in beverages sector


Step 2. Find EEIOemissions factor for the entire sector:

carbon dioxide	kg/2018 USD, purchaser price	0.325
methane	kg/2018 USD, purchaser price	0.008
nitrous oxide	kg/2018 USD, purchaser price	0.001

0.325+(0.008)*(25)+(0.0001)*(298)]=0.823 kg CO2e/\$2018

https://pasteur.epa.gov/uploads/10.23719/1517796/SupplyChainEmissionFactorsforUSIn dustriesCommodities.xlsx

Step 3. Multiply (adjust for inflation if necessary): (\$10M)*(0.823 kg CO2e/\$2018) = **8,230 tons CO2e** (much higher, includes Coca-Cola Scope 3)

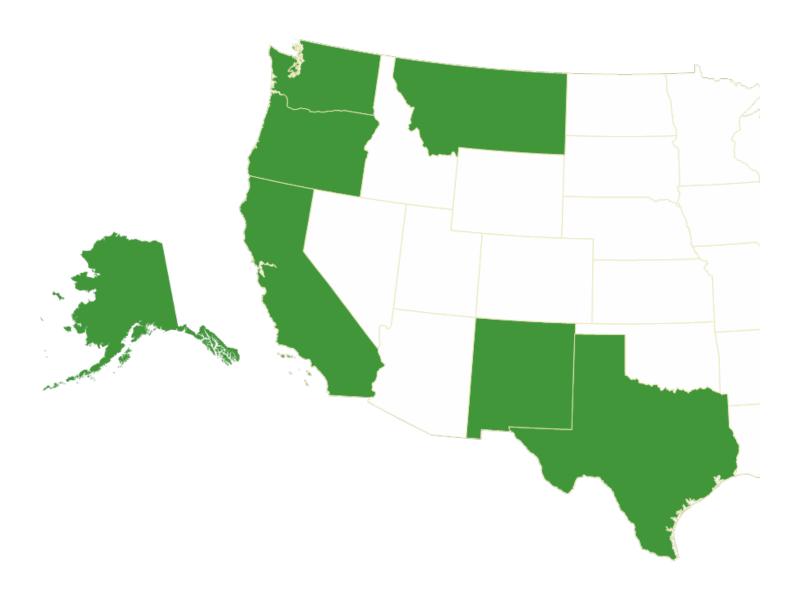
Carbon Clinic 3

Scope 3: Supply Chain

Providence's Approach to Carbon Accounting

Beth Schenk, PhD, RN, FAAN

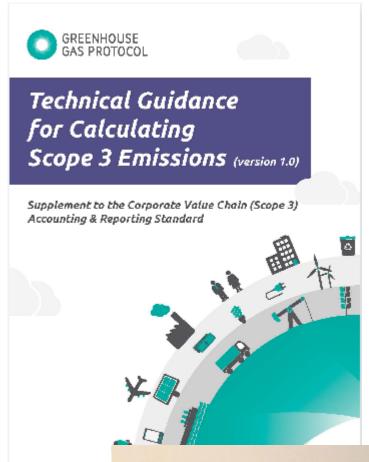
Executive Director of Environmental Stewardship



Providence's Approach

Do all we can this decade to reduce emissions and transform health care to be *planet-safe*

Measurement using the WE ACT Scorecard –


Usage, cost, and carbon data

Each site

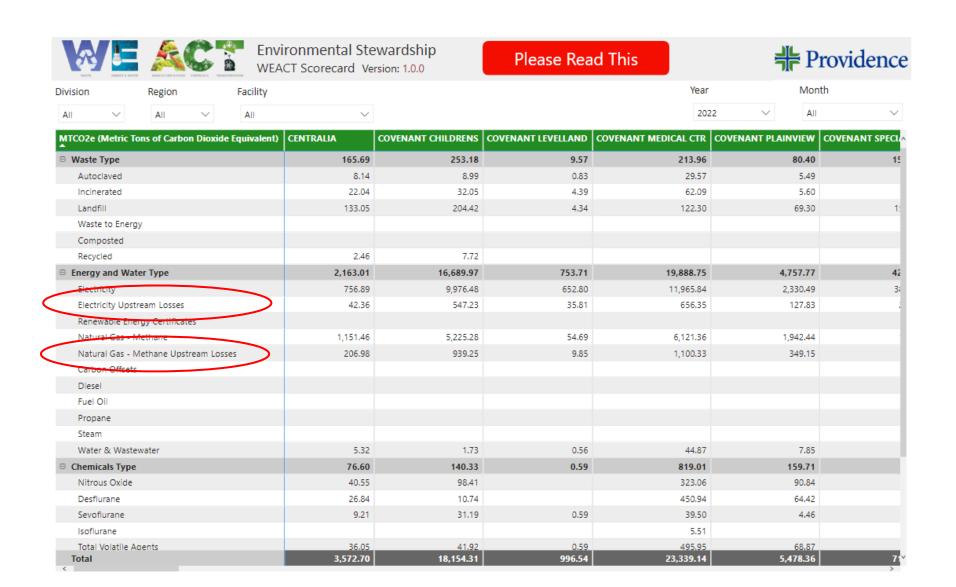
Monthly

Automated, transparent, accurate

Corporate Value Chain (Scope 3)
Standard Online Course

Category 3: Fuel and Energy related activities not included in Scope 1 or Scope 2

- Supplier-specific method —data from fuel providers on upstream emissions (extraction, production and transportation) of fuel consumed by the reporting company
- Average-data method estimates emissions by using secondary (e.g., industry average) emission factors for upstream emissions per unit of consumption (e.g., kg CO2e/kWh).

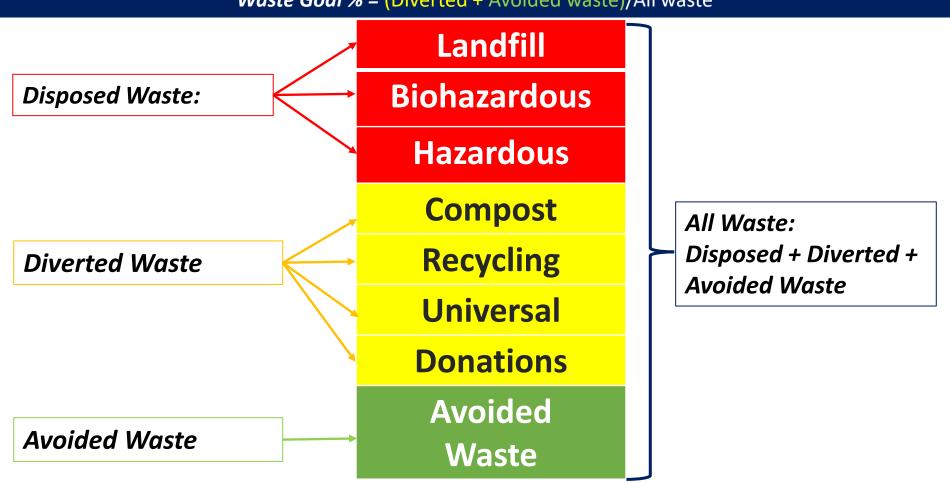

Providence: Average Data Method

Electricity: Schneider uses EPA E-grid T&D loss for each E-grid region (12,467)

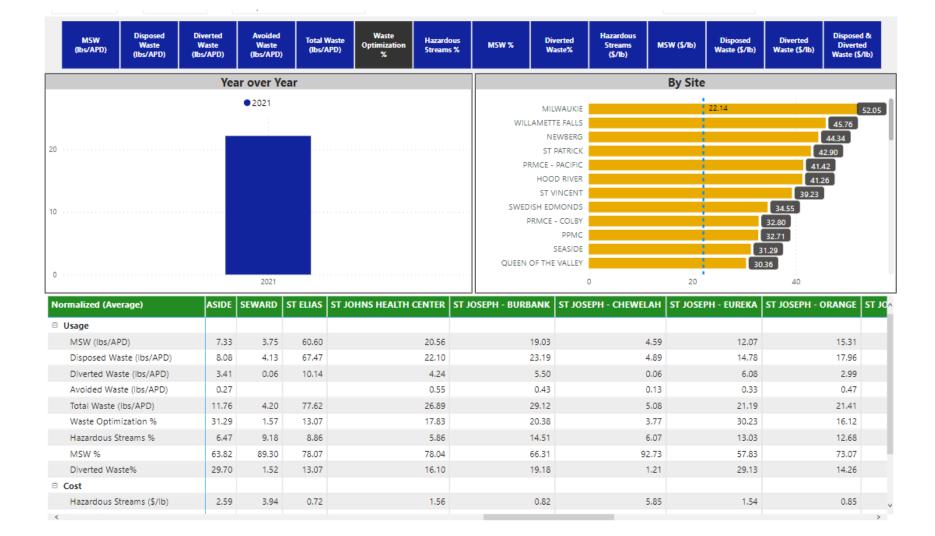
Natural Gas: Schneider uses emission factor for natural gas from DEFRA (30,813)

Category 3:

Supplier Specific Method: Provided by Schneider Electric


Category 5: Waste Generated in Operations

- Supplier-specific method, which involves collecting waste-specific scope 1 and scope 2 emissions data directly from waste treatment companies (e.g., for incineration, recovery for recycling)
- Waste-type-specific method, which involves using emission factors for specific waste types and waste treatment methods
- Average-data method, which involves estimating emissions based on total waste going to each disposal method (e.g., landfill) and average emission factors for each disposal method.


Waste Goal: : Divert more than 50% of waste from landfill and hazardous streams by 2030

Waste Goal % = (Diverted + Avoided waste)/All waste

Category 5: Average Data Method: Calculated on WE ACT Scorecard

aste Usage and Cost	CENTRALIA	COVENANT CHILDRENS	COVENANT LEVELLAND	COVENANT MEDICAL CTR	COVENANT PLAINVIEW	COVENANT SPECIALTY	GRACE SURGIC
WASTE							
Usage							
☐ Disposed Waste							
☐ Biohazardous (Ibs)							
Autoclaved - RMW (lbs)	38,662	33,579	4,138	145,575	29,077	8,592	
Autoclaved - RMW/Sharps (lbs)							
Incinerated - Path/Chemo (lbs)	302	6,325		8,436			
Incinerated - Path/Chemo/Pharm (lbs)							
Incinerated - Sharps/Pharm (lbs)	18,048	17,356	4,273	84,694	2,868	4,805	
□ Hazardous (Ibs)							
Incinerated - Narcotics (lbs)		2,211	77	2,090	48		
Incinerated - RCRA (lbs)				1,170		2,569	
Incinerated - RCRA Pharmaceutical (lbs)				246			
☐ Municipal Solid Waste (MSW) (lbs)							
Landfill (lbs)	733,440	990,880		2,982,000	279,400	128,700	
Waste to Energy (lbs)							
□ Diverted Waste							
Composted (lbs)							
Food Waste (lbs)	8,334						
☐ Donations (lbs)							
Global Partnership/MSRO (lbs)	1,657						
☐ Recycled (lbs)							
Cardboard (lbs)	15,000						
HIPAA Paper (lbs)	129,181	68,100	43,751	139,538		29,625	
Single Stream (lbs)	40,872					81,744	
SUD Collections (lbs)		617	133	1,717	526		
☐ Universal (lbs) Mixed Universal (lbs)							
e-\Waste (lbs)							
☐ Avoided Waste							
Reprocessed (lbs)							
SUD Reprocessed Purchases (lbs)		30	72	2,950	319		
□ Reused (lbs)							
Sharps Containers (lbs)	15,428	10,798	2,954	45,779	647	3,753	
☐ Total Waste							
☐ Total Waste (lbs)							
Total Waste (lbs)	1,000,924	1,129,896	55,398	3,414,194	312,885	259,789	

Waste Goal: : Divert more than 50% of waste from landfill and hazardous streams by 2030

Waste Goal % = (Diverted + Avoided waste)/All waste

- Average-data method, which involves estimating emissions based on total waste going to each disposal method (e.g., landfill) and average emission factors for each disposal method.
- EPA GHG Emissions Hub

MTCO2e (Metric Tons of Carbon Dioxide Equivalent)	MISSION -Together	MOUNT CARMEL	NEWBERG	PAMC	PETALUMA VALLEY	PPM
□ Waste Type	1,301.02	78.20	86.25	658.83	101.00	7(
Autoclaved	51.73	2.14		39.66	11.77	
Incinerated	177.14	6.72	20.81	19.21	13.75	2
Landfill	1,028.14	67.22	57.72	586.44	60.58	3
Waste to Energy						
Composted	17.60		2.13	0.75	6.14	
Recycled	26.42	2.12	5.59	12.78	8.77	

Total Waste emissions (2021): 22,264 MTCO2e

• N2O: 11,222

• Volatile Anesthesia: 3,366

• Business travel: 535

• Reimbursed Miles: 996

Waste Goal: : Divert more than 50% of waste from landfill and hazardous streams by 2030 Waste Goal % = (Diverted + Avoided waste)/All waste Landfill **Biohazardous** Disposed Waste: **Hazardous** Compost All Waste: Disposed + Diverted + Recycling **Diverted Waste Avoided Waste** Universal **Donations Avoided Avoided Waste** Waste

Category 6: Business Travel

- Fuel-based method, which involves determining the amount of fuel consumed during business travel (i.e., scope 1 and scope 2 emissions of transport providers) and applying the appropriate emission factor for that fuel
- **Distance-based method**, which involves determining the distance and mode of business trips, then applying the appropriate emission factor for the mode used
- **Spend-based method**, which involves determining the amount of money spent on each mode of business travel transport and applying secondary (EEIO) emission factors.

Distance-based Method

- Flights (# segments, class, distance from AMEX)
- Rental Cars (# miles, MPG from vendors)
- Reimbursed Miles (# miles, regional emission factor)
- Hotels (# nights, EF based on city and use intensity of hotel)

-							
∃ Transportation Type	1,764.34	2,186.31	3,951.93	1,539.30	2,299.59	230.97	709.95
Flights	3.87	0.85	50.32	0.69	0.59	4.84	0.24
Hotels	1.82	0.34	5.01	0.80	1.08	1.08	0.71
Rental Cars	1.69	0.62	3.08	0.62	0.31	0.31	0.46
Total Business Travel	7.38	1.80	58.42	2.10	1.97	6.22	1.42
Reimbursed Miles	2,22	3.56	33.40	7.17	2.48	3.91	13.62

- Business travel (2021): 535 MTCO2e
- Reimbursed Miles: 996

Category 7: Employee Commuting

- Fuel-based method, which involves determining the amount of fuel consumed during commuting and applying the appropriate emission factor for that fuel
- **Distance-based method,** which involves collecting data from employees on commuting patterns (e.g., distance travelled, and mode used for commuting) and applying appropriate emission factors for the modes used
- Average-data method, which involves estimating emissions from employee commuting based on average (e.g., national) data on commuting patterns.

Distance-based Method

- Survey employees
- Use existing state or local employee surveys
- Create emissions factor per employee for each Providence region
- Calculate based on FTE

-							
∃ Transportation Type	1,764.34	2,186.31	3,951.93	1,539.30	2,299.59	230.97	709.95
Flights	3.87	0.85	50.32	0.69	0.59	4.84	0.24
Hotels	1.82	0.34	5.01	0.80	1.08	1.08	0.71
Rental Cars	1.69	0.62	3.08	0.62	0.31	0.31	0.46
Total Business Travel	7.38	1.80	58.42	2.10	1.97	6.22	1.42
Reimbursed Miles	2.22	3.56	33.40	7.17	2.48	3.91	13.62
Employee Commuting	1,754.73	2,180.94	3,860.12	1,530.03	2,295.14	220.84	694.92

• Business travel (2021): 535 MTCO2e

• Reimbursed Miles: 996

• Employee Commuting: 98,032

Category 8: Upstream Leased Assets Category 9: Downstream Leased Assets

(The calculation methods for upstream and downstream leased assets do not differ.)

- **Asset-specific method**, which involves collecting asset-specific (e.g., site-specific) fuel and energy use data and process and fugitive emissions data or scope 1 and scope 2 emissions data from individual leased assets
- Lessor-specific method, which involves collecting the scope 1 and scope 2 emissions from lessor(s) and allocating emissions to the relevant leased asset(s)

Providence – Asset –specific method

- Onboarding 615 non-acute facilities onto scorecard
- Tracking energy and emission data as we do for acute sites

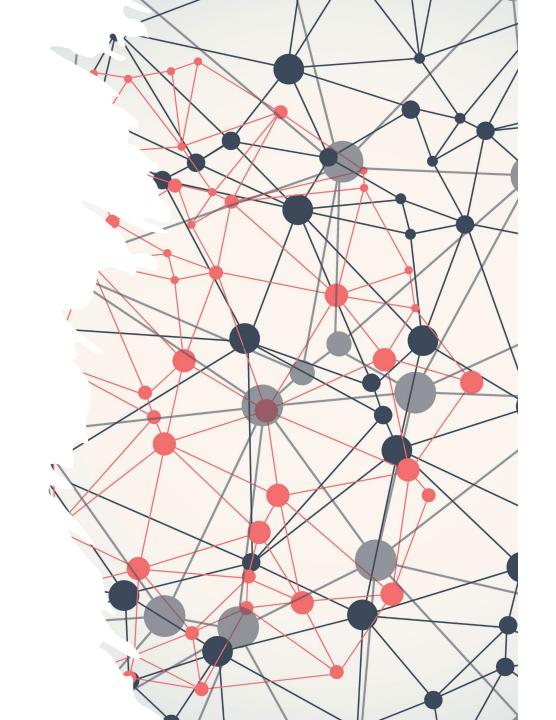
Waste Optimization: Data tracking; Action plans

Energy and water audits; efficiency projects; renewable electricity procurement strategy

Reduce carbon intensity of meals; reduce food and packaging waste; healthy, sustainable foods

Reduce GHGs from anesthetic agents, nitrous oxide. Reduce chemicals of concern in products and supplies

Commuter support; EV Charging strategy; Fleet vehicle management plan; Business travel reduction goal


Category 15: Investments

- Companies should account for the proportional scope 1 and scope 2 emissions of the investments that occur in the reporting year.
- When scope 3 emissions are significant compared to other sources of emissions, investors should also account for the scope 3 emissions of the investee company.

Providence

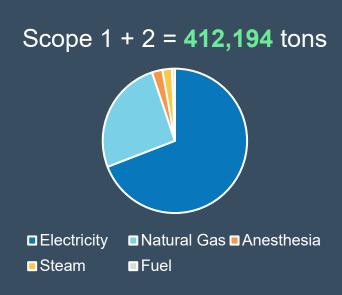
- Investment firm performed assessment in 2021, in alignment with the GHGP.
- 20% of our entire footprint, similar to all of our energy use.
- Socially Responsible Investment Committee

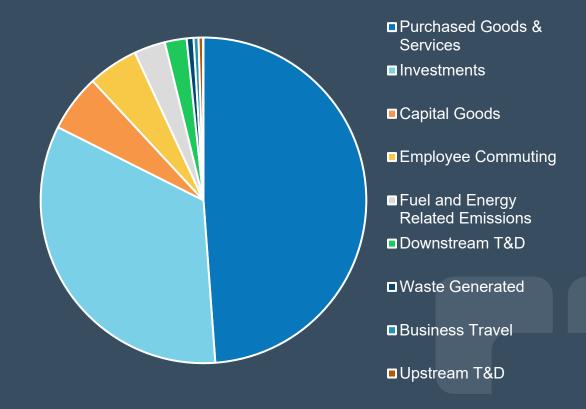
"The goal is to turn data into information, and information into insight." **Carly Fiorina**

Health for a Better World

Thank You

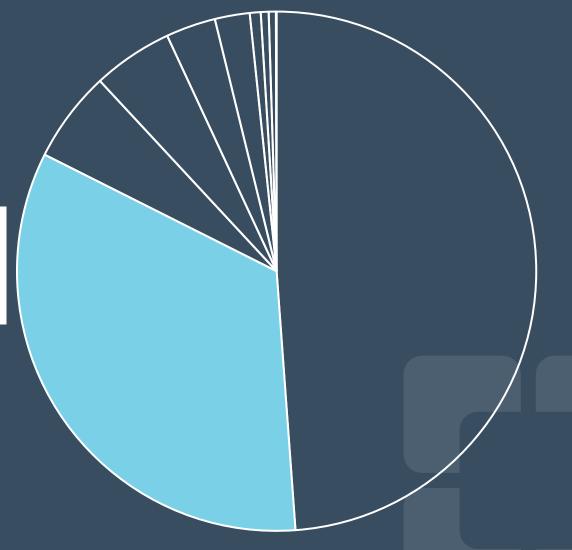
Sustainability at Cleveland Clinic


Jon Utech
Senior Director, Sustainability Strategy
Buildings + Design
1/26/23



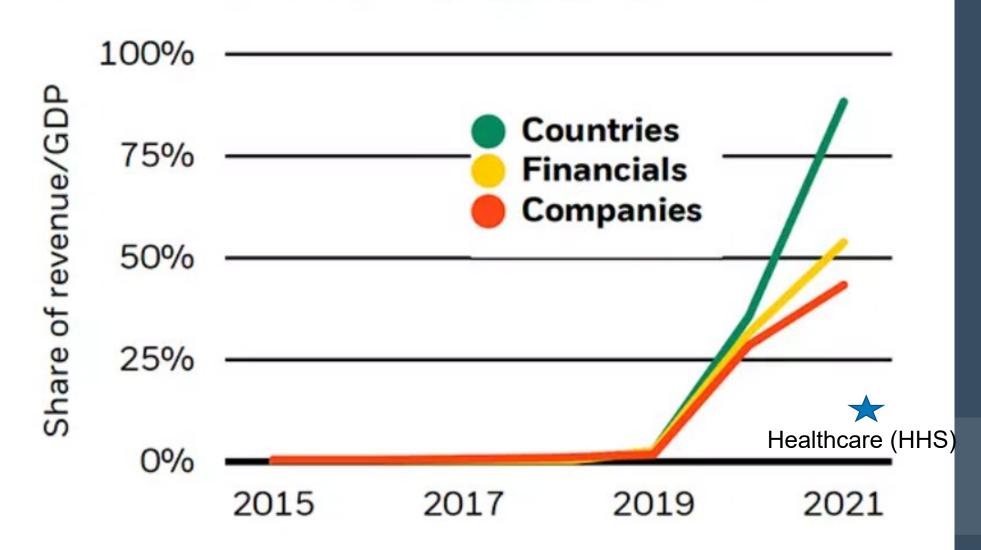
At Cleveland Clinic, Scope 3 is 5 times bigger than Scope 1+2...

Scope 3 = 2,083,551 tons



Investments are 34% of Scope 3...

Data Gathering:


- Public Filings for Cleveland Clinic
- Total Investments YE 2019: \$6.5B
- Normalized to YE 2017: \$5.54B

Activity Factor \$ Millions of 2017 Investments	(GHG Intensity(1) (tons of CO 2e/\$Million))	Investment Footprint
, 5,540	*	126.252	=	699,449

The times they are a-changin'

Share of net-zero pledges by key players, 2015-2021

Transition in action

BlackRock guide to the net-zero transition, February 2022

Decision makers Drivers Channels **Outcome Transition approaches Asset owners Fundamentals** Societal Cash flows for preferences companies change **Transformation Navigate** of companies Technology Drive Macroeconomy and Invent portfolios Repricing Policy Market value of companies Companies changes

Sustainable decisions

Not-for-profit Healthcare ESG Issuer Profile Scores and Credit Impact Scores Distribution

ESG Classification System Incorporates Credit Relevant Considerations

Our assessment of ESG risks is framed by the classification

Environmental

Physical climate risks

Carbon transition

Water management

Waste and pollution

Natural capital

Social

Customer relations

Demographic and societal trends

Human capital

Health and safety

Responsible production

Governance

Financial strategy & risk management


Management credibility & track record

Organizational structure

Board structure, policies & procedures

Compliance & reporting

ESG Influence...

Moody's affirms Cleveland Clinic Health System Obligated Group's (OH) Aa2; stable outlook

29 APR 2021 | RATING ACTION | MOODY'S INVESTORS SERVICE

New York, April 28, 2021 -- Moody's Investors Service has affirmed **Cleveland Clinic** Health System Obligated Group's (CCHS) Aa2, Aa2/VMIG 1 and P-1 ratings. The outlook is stable. CCHS's total debt outstanding is approximately \$5.2 billion. RATINGS RATIONALE The As

Investment Levers

Activity Factor

\$ Millions of 2017 Investments

GHG Intensity(1)

(tons of CO 2e/\$Million)

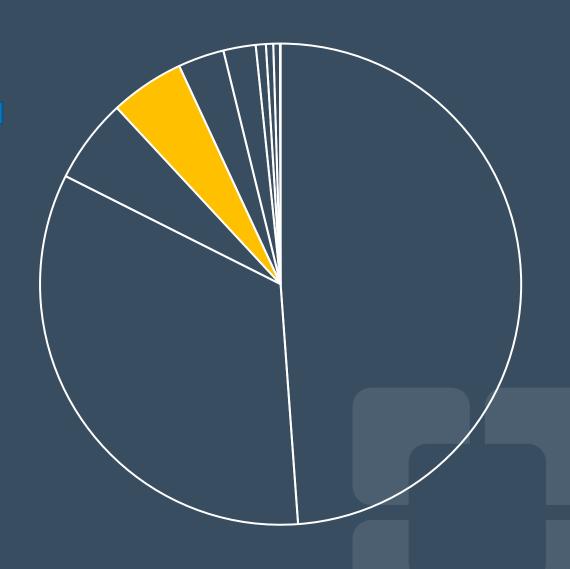
Levers • Investment Performance of

Change • Contributions

- Industry Investment Mix
- Specific Investment Types
- Investor Engagement

Investment Activity: Investment Performance

- Investment Performance: Impact Varies
 - what matters is not the performance of the investment but it's performance relative to it's carbon intensity.
 - Investment increases at the same rate as carbon in the investment there is no change (intensity matters)
- Contributions: Increases footprint
 - If philanthropic contributions and/or cash flow from operations are invested then total footprint increases


Investment Activity: GHG Intensity

- Industry Investment Mix: Lower Intensity Lowers Footprint
 - If investments are shifted to lower carbon intensity sectors then footprint decreases
- Specific Investments: Removing High Intensity Lowers
 Footprint
 - If investments high carbon investments are exited footprint decreases
- ESG Policy for Investing: Can set guidelines for many issues including carbon

Employee Commuting is 6% of Scope 3...

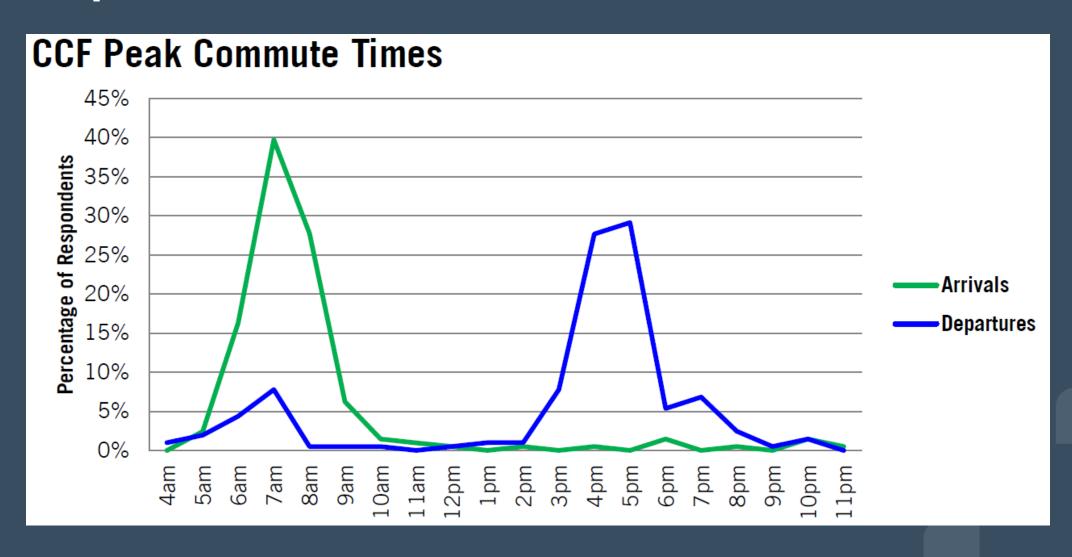
Data Gathering:

- Bureau of Transportation Statistics
- Employee Survey
- Home work routes

Employee Commuting Levers

Activity Factor

GHG Intensity(1)


Miles Commuted (Home –Work)

GHG per Trip

- cevers of Change
- Levers Work Location
 - Work from Home
 - Miles from Home
 - Live Local

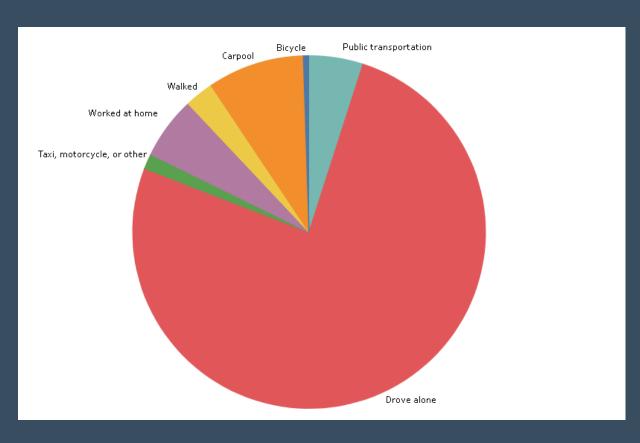
- Commute Mode
 - Drive alone vs. others
- Vehicle Type
 - Vehicle Shift

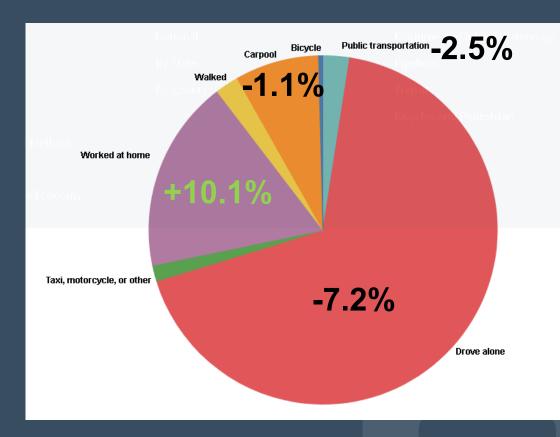
Transportation Policies for Mode Shift

Transportation Policies for Mode Shift

Q15*: Of the options below, which 3 factors most heavily impact your decision to travel by the mode(s) you selected? Please check only 3 boxes.

Travel time (duration)	21%
Work/shift hours (time of day)	18%
Availability of vehicle	13%
Travel distance	12%
Availability of transit service	7%
Safety	6%
Other (please explain)	6%
Reliability of transit service	6%
Travel Experience	5%
Cost (expenses)	3%
Commuter benefits provided by your employer	1%
Environmental reasons	1%
Physical ability	1%
Health benefits	0%

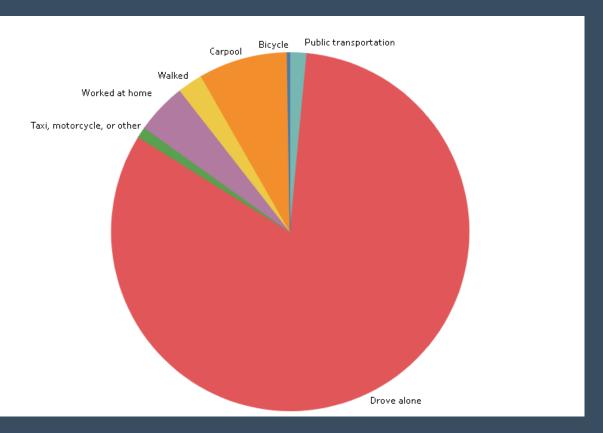

Q16: Of the options below, which 3 factors would most heavily impact your decision to choose a different travel mode from those you selected? Please check only 3 boxes.

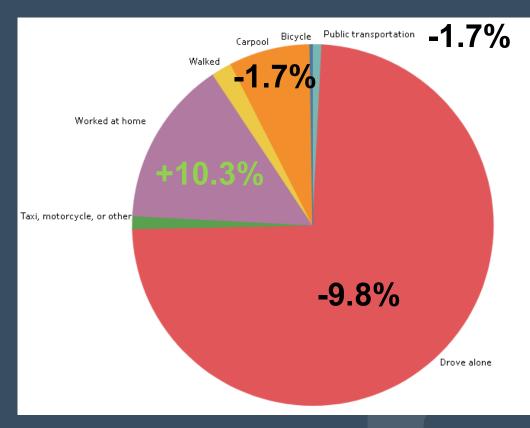

17%
17%
16%
11%
8%
7%
6%
5%
4%
3%
3%
2%
0%
0%

Q17*: Regardless of how you typically get to work, what other options would you consider for your commute if the factors you selected in Question 16 were present? Check all that apply.

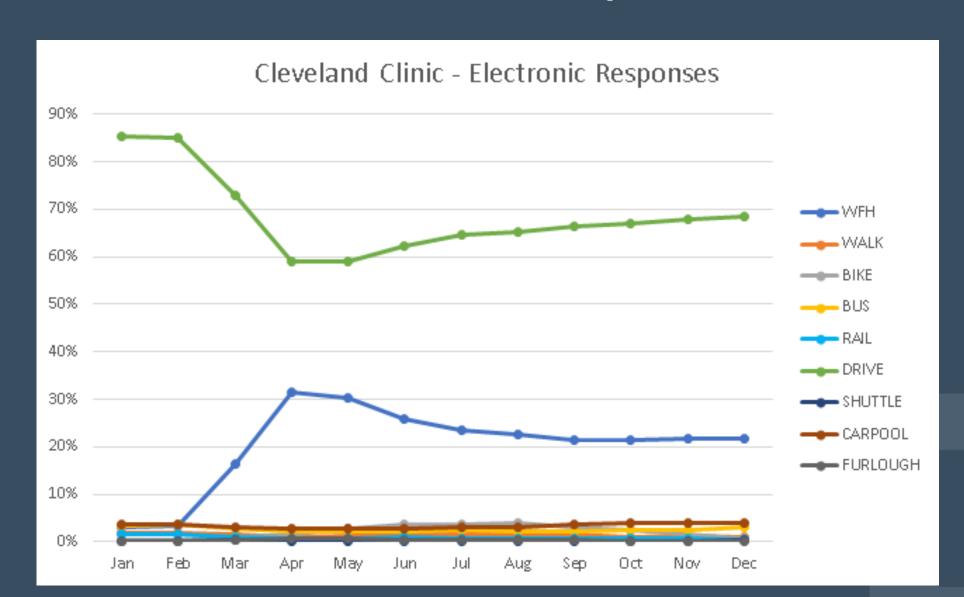
RTA/local bus/HealthLine	18.2%
RTA Rail	16.4%
Carpool	15.0%
Telework	12.9%
Drop off/pick up by someone else	10.8%
Bike	9.0%
Drive alone	8.2%
Walk	4.5%
Vanpool	3.7%
Other	1.3%

National Commuting COVID Change

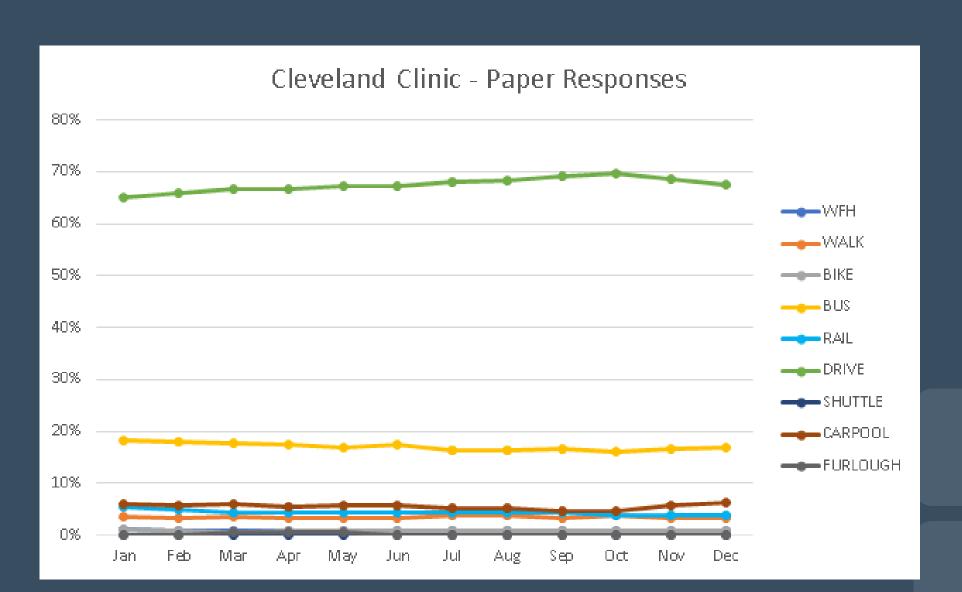

Commute Mode by State


Bureau of Transportation Statistics Commute Mode data by	
percent by state (2019)	

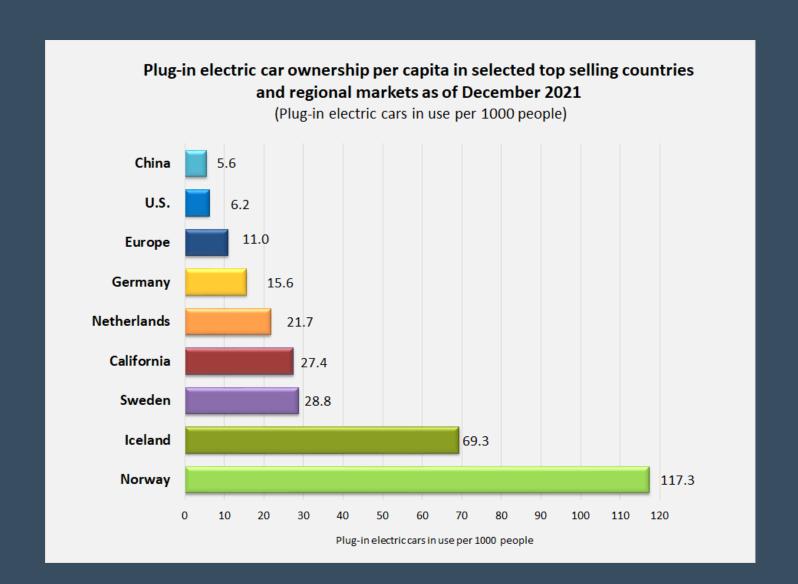
Source	https://www.bts.gov/com	mute-mode	
State 💌	Mode ▼	Commute mode share (percent)	~
Alabama	Bicycle		0.1%
Alabama	Carpool		8.7%
Alabama	Drove alone		85.2%
Alabama	Public transportation		0.4%
Alabama	Taxi, motorcycle, or other		1.0%
Alabama	Walked		1.2%
Alabama	Worked at home		3.4%
Alaska	Bicycle		0.7%
Alaska	Carpool		12.0%
Alaska	Drove alone		70.0%
Alaska	Public transportation		1.0%
Alaska	Taxi, motorcycle, or other		5.0%
Alaska	Walked		7.1%
Alaska	Worked at home		4.3%


Ohio Commuting COVID Change

2019 2021



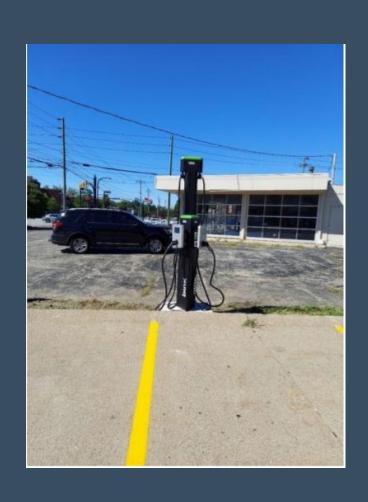
Cleveland Clinic 2020 Transportation Survey

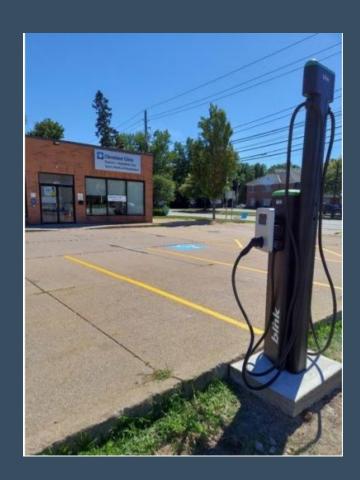

Cleveland Clinic 2020 Transportation Survey

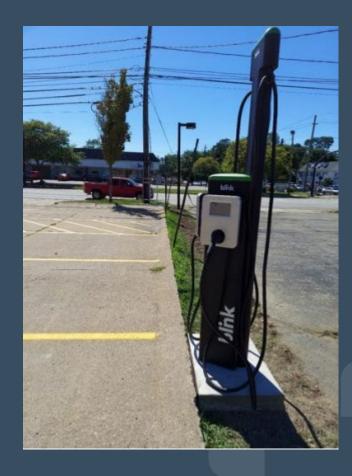
Transportation Policies

- Carpool Incentive: 50% for 2, Free for 4
- Fuel Efficiency Vehicle Incentive: Lower Rate
- EV Purchase Incentive: \$1,000 new or \$500 Used
- Public Transportation: RTA Commuter Advantage
- Biking: Map Locations for Bikes + Showers

Electric Vehicles Set to Grow




Ohio is 12th Highest State in EVs/Port


EV Chargers by State - September 2021

			Ports				
	State	Total Evs	Level 1	Level 2	Level 3	Total	EVs/Port
1	New Jersey	66,555	14	1095	501	1,610	41.34
2	California	930,811	280	27762	6143	34,185	27.23
3	Hawaii	19,243	5	662	84	751	25.62
	New	7,171	5	211	89	305	23.51
4	Hampshire						
5	Arizona	43,171	1	1542	409	1,952	22.12
12	Ohio	31,654	7	1467	333	1,807	17.52
47	West Virginia	1,795	1	196	69	266	6.75
48	Kansas	5,848	2	825	110	937	6.24
49	Mississippi	1,689	0	211	70	281	6.01
50	North Dakota	656	0	73	61	134	4.9
51	Wyoming	707	4	90	75	169	4.18
	Total	2,147,070	1,305	88,070	19,932	109,307	

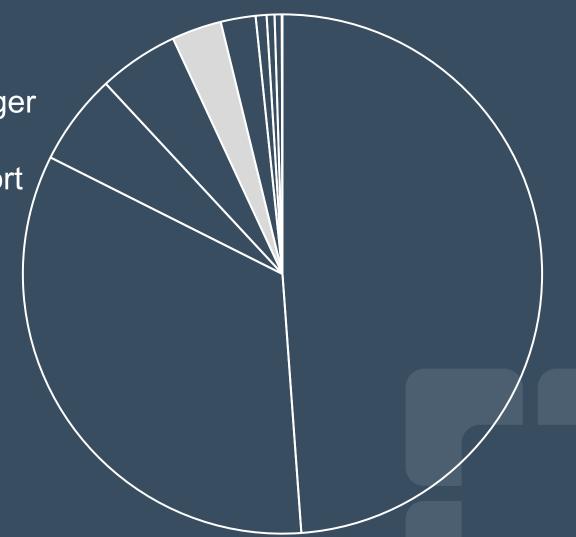
EV Charging Stations

Work From Home Impact

7,500 FTE commuting reduction

52 million miles/year less

Reduction of 10% in Carbon Footprint


Fuel and Energy Related Emissions are is 3% of Scope 3...

Data Gathering:

Utility Bills for Electricity + Natural Gas

Automatically loaded into Portfolio Manager

Gas, Diesel and Fuel Oil from Fleet Report

Upstream Energy Emissions

Upstream Emissions of Purchased Fuels

Fuel	Activity Factor	GHG Intensity Kg CO2e/UoM	Emissions (Tons/CO2e)	
Fuel Oil	21,522 gallons	2.284	49	
Gasoline	239,389 gallons	2.261		541
Diesel	40,490 gallons	2.37	9	
Natural Gas	20,223,274 Therms	0.701	14,171	

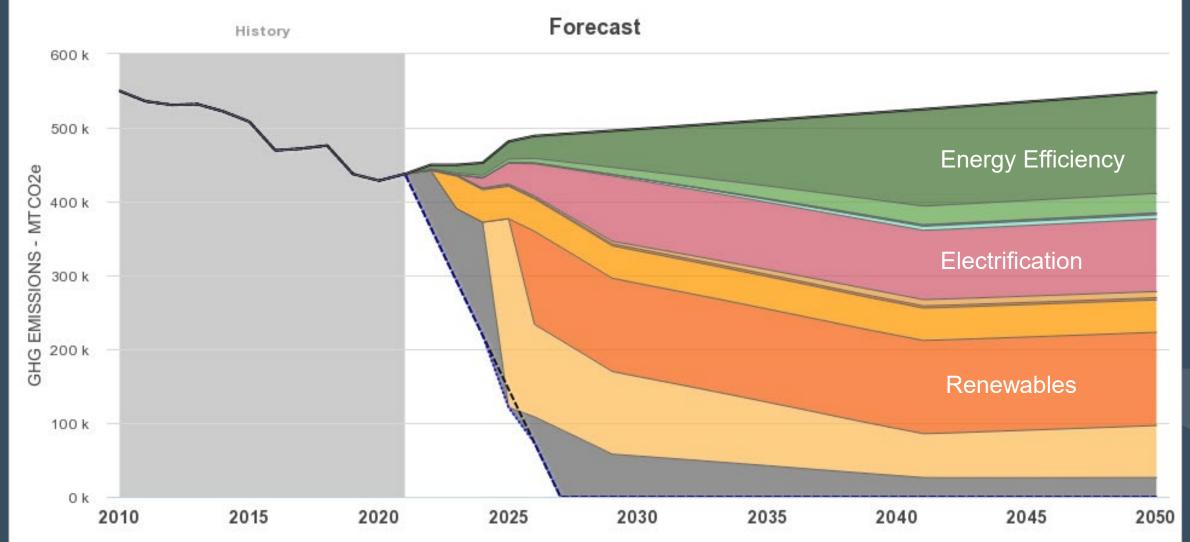
Upstream Emissions of Purchased Electricity

Energy	Activity Factor	GHG Intensity Kg CO2e/UoM	Emissions (Tons/CO2e)	
Electricity	519,355,812 kWh	0.146		34,503

Transmission and Distribution Losses

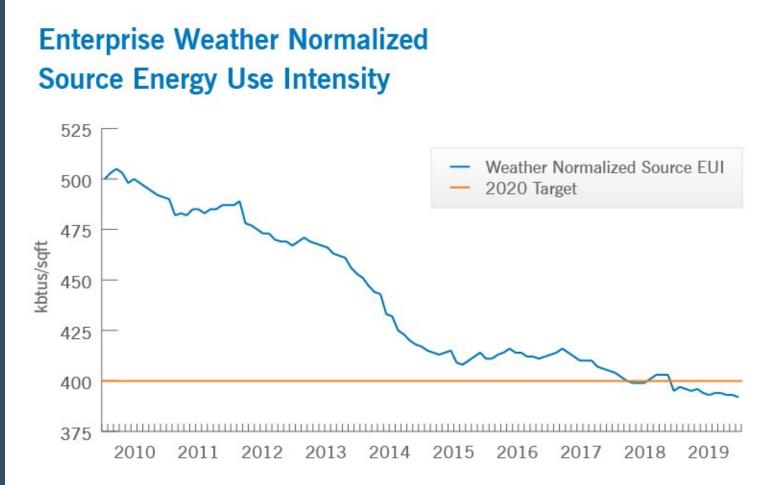
Upstream Emissions of Purchased Electricity

Energy	Activity Factor	Loss Factor %	T&D kWh	GHG Intensity kg CO2e/UoM	Emissions ons/CO2e)
Electricity	519,355,812 kWh	5%	25,353,836	0.146	15,184

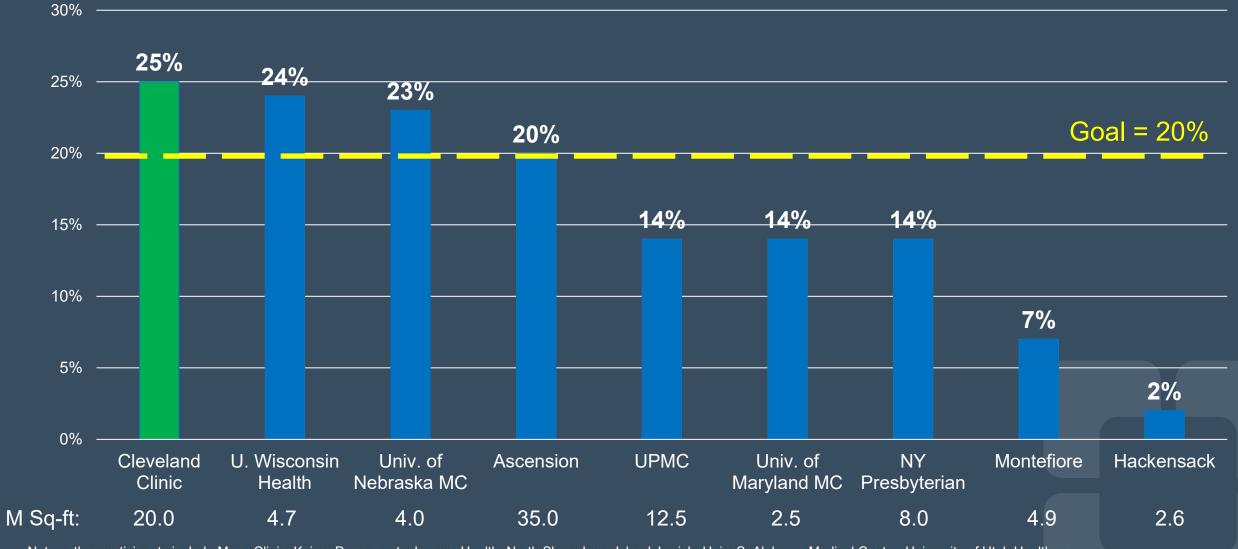

Upstream Energy + T&D = 4% of Scope 3

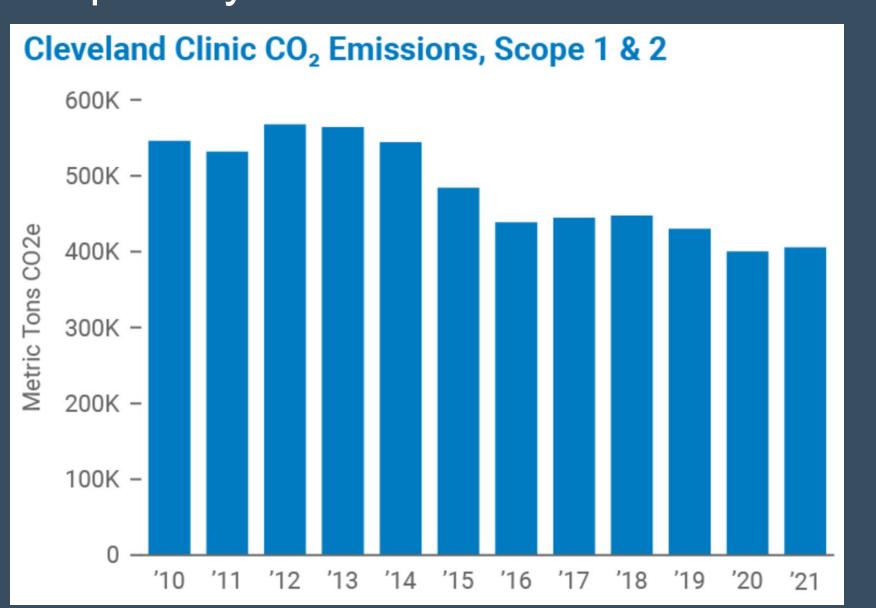
Other Energy Solutions

Fuel	Upstream + T&D	% of Upstream + T&D	Solutions
Electricity	49,687	77%	Energy Efficiency + Renewables
Natural Gas	14,171	22%	Electrification or Offsets
Gasoline	541	1%	Electric Vehicles
Diesel	96	0%	Electric Vehicles
Fuel Oil	49	0%	Electrification


Scope 1+2 Strategy

Energy Efficiency: Mitigation = 20% Goal

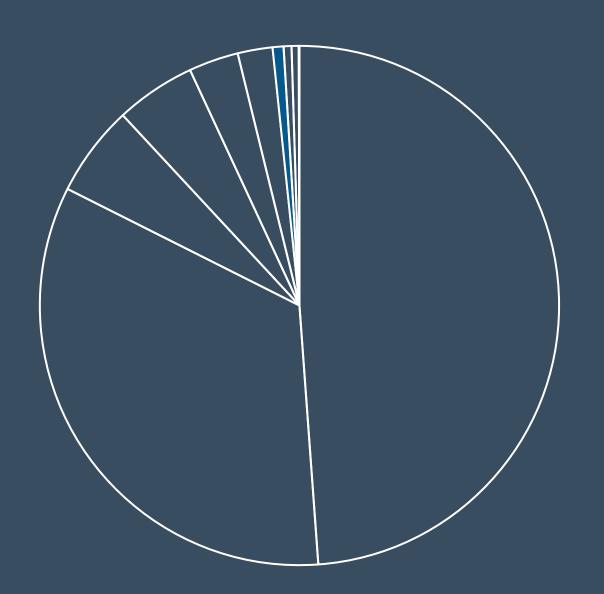

- LED Retrofits
- OR Setbacks
- Chiller Optimizations
- Filter Optimizations
- Retro-Commissioning
- Building Monitoring
- Temperature Control


Percent EUI Reduction from Baseline 2010-2020

Note: other participants include Mayo Clinic, Kaiser Permanente, Legacy Health, North Shore-Long Island Jewish, Univ. S. Alabama Medical Center, University of Utah Healthcare

Cleveland Clinic has reduced it's carbon footprint by 25% in total since 2010

Carbon Reduction Drivers


2010-2020 (Sq Ft)

- Energy Efficiency (26%)
- Fleet Efficiency (2%)
- Anesthesia (2%)
- Renewables/Grid (3%)

2020-2027

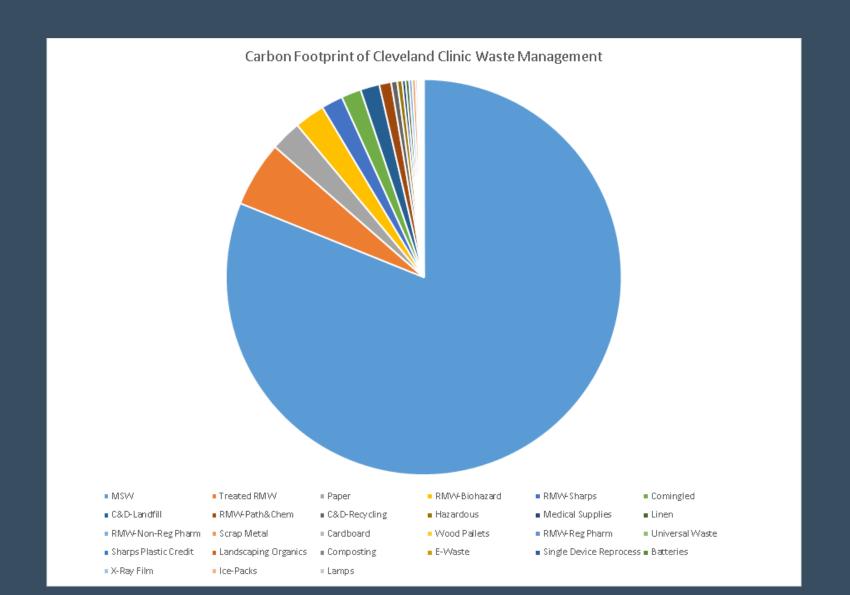
- More Efficiency
- Better Buildings
- Renewable Energy
- Offsets


Waste Generated is 1% of Scope 3...

Cost Saving Ideas: "My two cents"

Cost Saving Ideas: "My two cents"

More than 80% of ideas submitted are related to waste reduction


We Track Many Waste Streams

Category	EPA Material Category
MSW	Mixed MSW (municipal solid waste)
Treated RMW	Mixed MSW (municipal solid waste)
Paper	Mixed Paper (general)
RMW-Biohazard	Mixed MSW (municipal solid waste)
RMW-Sharps	Mixed MSW (municipal solid waste)
Comingled	Mixed Recyclables
C&D-Landfill	Mixed MSW (municipal solid waste)
RMW-Path&Chem	Mixed MSW (municipal solid waste)
C&D-Recycling	Mixed Recyclables
Hazardous	Mixed MSW (municipal solid waste)
Medical Supplies	Mixed MSW (municipal solid waste)
Linen	Mixed MSW (municipal solid waste)
RMW-Non-Reg Pharm	Mixed MSW (municipal solid waste)
Scrap Metal	Mixed Metals
Cardboard	Corrugated Containers
W ood Pallets	Dimensional Lumber
RMW-Reg Pharm	Mixed MSW (municipal solid waste)
Universal Waste	Mixed MSW (municipal solid waste)
Sharps Plastic Credit	Mixed Plastics
Landscaping Organics	Mixed Organics
Composting	Mixed Organics
E-Waste	Mixed Electronics
Single Device Reprocess	Portable Electronic Devices
Batteries	Mixed Electronics
X-Ray Film	Mixed Plastics
Ice-Packs	Mixed MSW (municipal solid waste)
Lamps	Mixed Electronics

We Publish Them in our ESG Report

Municipal Solid Waste Drives Carbon Footprint

Two Programs Have Driven Change...

Material	Tons/Year	Factor/Ton	Tons of CO2e	
MSW	17,885	0.63	11,268	
Paper	4,968	0.07	348	
Comingled	2,504	0.09	225	
Everything Else	5,086	various	2,054	
Total	30,443		13,894	

Two Programs Have Driven Change...

Material	Tons/Year	Factor/Ton	Tons of CO2e	
MSW	17,885	0.63	11,268	
Paper	4,968	0.63	3,130	
Comingled	2,504	0.63	1,577	
Everything Else	5,086	various	2,054	
Total	30,443		18,029	

Impact of 4,135 ton reduction from paper and comingled recycling Is 0.2% reduction in Scope 3 Footprint

Paper Recycling

Paper Facts

- 70,000+ caregivers
- 3,569 Containers
- 4,968 tons recycled

Paper Impact

- 15 years = 31,512 tons of CO2e
 - 6,790 gas cars for a year or
 - 6,131 homes' electricity or
 - 3.8 Billion smartphone charges

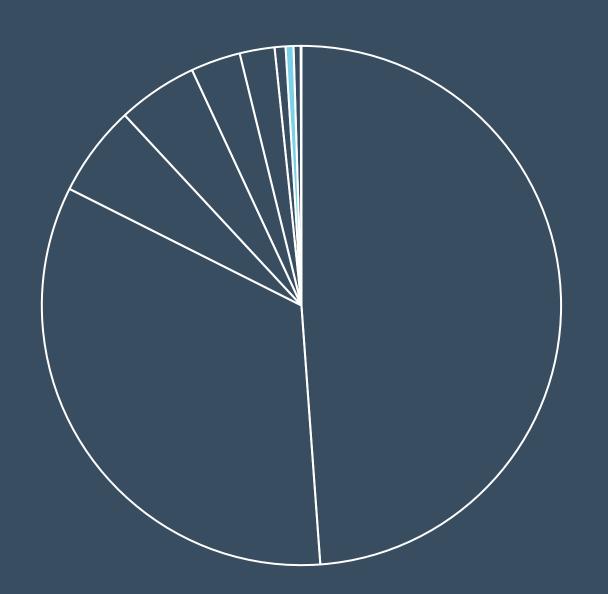
Comingled Recycling

CoMingled Facts

- 70,000+ caregivers
- 6,597 Containers
- 2,504 tons recycled
- CoMingled Impact
- 15 years = 15,562 tons of CO2e
 - 3,353 gas cars for a year or
 - 3,028 homes' electricity or
 - 1.9 Billion smartphone charges

Trash that.

If we don't recycle right, all items will go into the trash.


WASTE

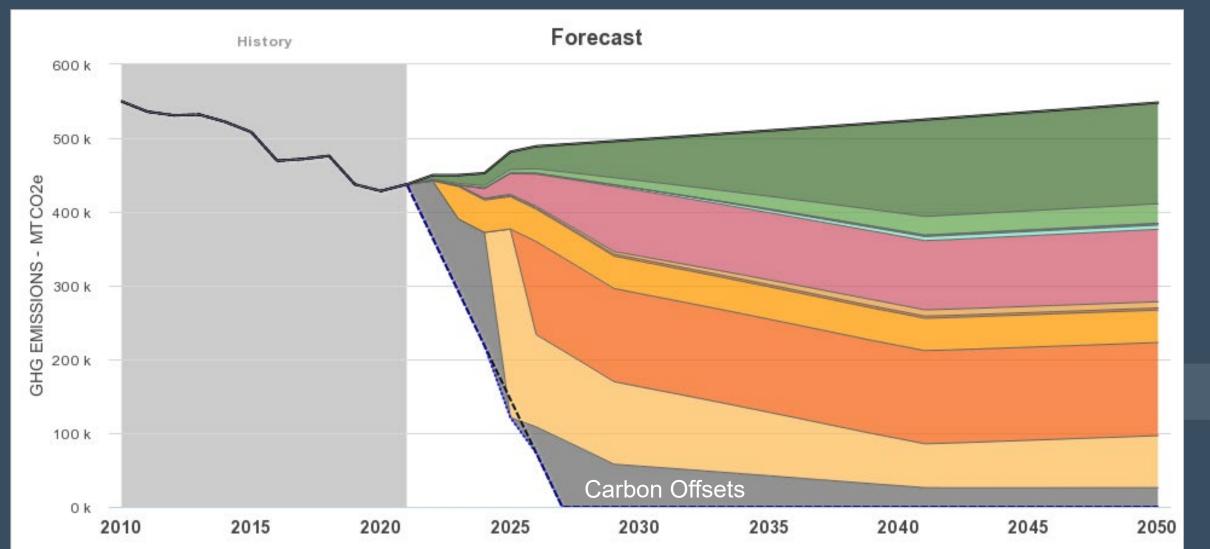
NAPKINS, PLASTIC UTENSILS, PAPER CUPS. & STRAWS

PLASTIC BAGS

Questions? Contact healthyenvironment@ccf.org

Business Travel is 0.5% of Scope 3...

Business Travel


- 10,543 Tons
- Data from our business travel service partner

Impact Levers

- Travel Less
- Virtual Meetings
- Offsets

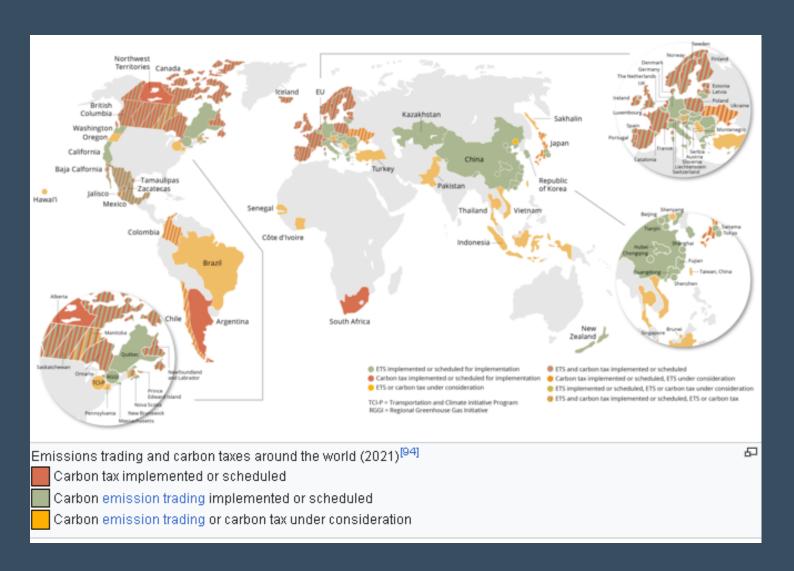
Cleveland Clinic + Carbon Offsets

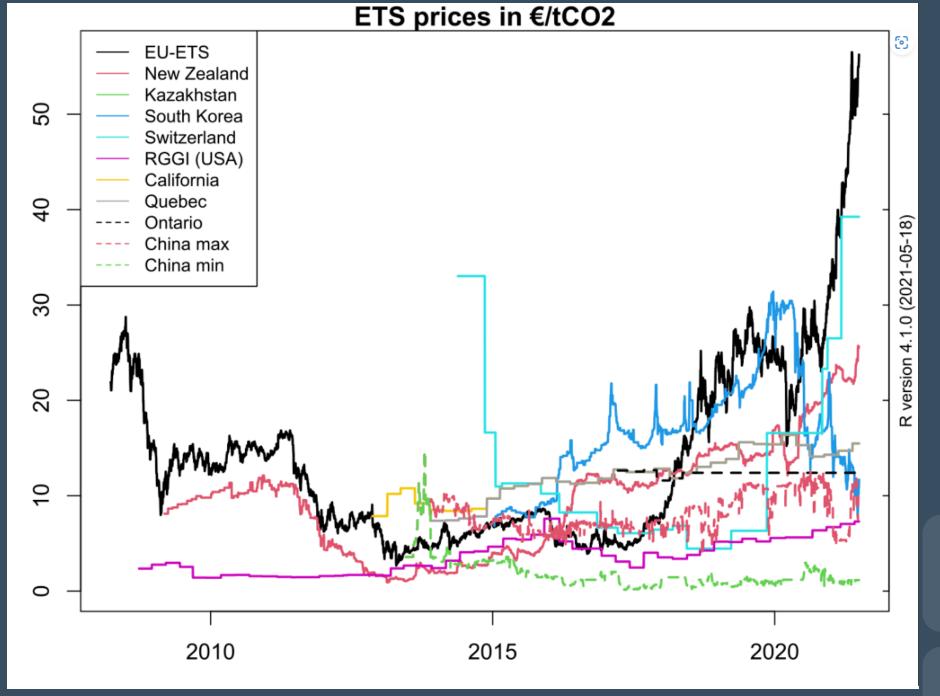
Carbon Offsets

Voluntary vs. Compliance Carbon Offsets

 Healthcare carbon offsets are voluntary...but what are they really?

What is a carbon market?


- Cap on Emissions (Country/Region)
- Reduce Cap Every Year Until Goal Reached


- If Company A can reduce lower than cap, they can sell reduction to company B
 - Cheaper than regulated reductions

Carbon Markets in USA

Carbon Markets

Carbon Offset Types

- Planting trees
- Not cutting down trees
- Agricultural/soil management practices
- Methane capture from unregulated sectors
- Destruction of potent industrial GHG gases
 - HFCs and SF6

Carbon Offset Quality

- Verified: by an accepted 3rd party
- Additionality: but for this it would not have occurred
- Transparency: measurement and data
- Permanent: can't go back

(Must Have Threshold)

Healthcare Considerations:

- Co-Benefits: local/biodiversity
- Local/Health Equity

Cleveland Clinic

Every life deserves world class care.