NATIONAL ACADEMY of MEDICINE ACTION COLLABORATIVE ON DECARBONIZING THE **U.S. HEALTH SECTOR**

Carbon Clinic 2

Scope 3: Purchased goods & services / supply chain, capital goods, upstream and downstream transportation, use of sold products

The Carbon Clinic Series

Clinic 1: Scopes 1&2

Understanding the basics

Scope 1 and 2

Speakers

- Jon Utech, Cleveland Clinic
- Seema Wadhwa, Kaiser Permanente
- Matthew St. Claire & Seema Gandhi, *UC Health*

Clinic 2: Scope 3

Purchased goods & services / supply chain, capital goods, upstream and downstream transportation, use of sold products

Speakers

- Jodi Sherman, Yale New Haven Health
- Beth Schenk, Providence
- Matthew Eckelman, Northeastern
 University

Clinic 3: Scope 3 con't

January 26, 2023 | 11am-1pm ET

Investments, employee commuting, waste, business travel, leased assets, carbon offsets

Speakers

- Jon Utech, Cleveland Clinic
- Beth Schenk, Providence

Presenters

- Matthew Eckelman, Northeastern University
- Beth Schenk, Providence
- Jodie Sherman, Yale New Haven Health System

Providence

Yale NewHaven **Health**

Carbon Clinic Overview

Agenda

Scope 3 Overview

Implementation: Providence

Implementation: Yale New Haven Health System

Questions & Answers

Carbon Clinic 2 Scope 3 Emissions (part 1)

Matthew Eckelman, PhD

Assoc. Prof., Civil & Environmental Engineering Northeastern University

Carbon Fontnrint of Health Care

Delivering a 'Net Zero' National Health Service, NHS in England

What are Scope 3 Emissions?

"Indirect" Emissions in the Value Chain (spatially distributed, huge variety)

U.S. Health Care GHG Emission Contributions

Eckelman et al., Health Affairs 2020

U.S. Health Care GHG Emission Trends

Eckelman et al., Health Affairs 2020

Comparing Across Health Systems

Indicator 3.6: Health Care GHG Emissions Lancet Countdown on Health and Climate Change 2020 Report

Impact of Climate Change on Human Health

Injuries, fatalities, mental health impacts

He

Asthma, cardiovascular disease

Health Effects of Health Care Emissions

Eckelman and Sherman, AJPH 2018

Scope 3 Categories

- Purchased Goods & Services
- Capital Goods
- Upstream Fuel & Energy
- Upstream Transp. & Distribution
- Waste
- Business Travel
- Employee Commuting
- Upstream Leased Assets

Downstream

- Downstream Transp. & Distribution
- Processing of Sold Products
- Use of Sold Products
- End-of-Life of Sold Products
- Downstream Leased Assets
- Franchises
- Investments

Scope 3: Purchased Goods & Services

Category description

his category includes all upstream (i.e., cradle-to-gate) emissions from the production of products purchased or acquired by the reporting company in the reporting year. Products include both goods (tangible products) and services (intangible products).

- This is the largest and most complex category of Scope 3 emissions, so we will spend the most time on it
- The GHG Protocol Corporate Standard presents several carbon accounting options – you can choose

Scope 3: Purchased Goods & Services Step 1. Collect and categorize procurement data

Vendor	Account	Item	Long Descr	Std UOM	Net Recv	Per Unit Cost	Iter	n Cost
	910100	000000000000000424	CATHETER COUDE 14FRX5ML LATEX	EA	1.0000	\$ 10.11	\$	10.11
	910100	00000000000003044	CATHETER FOLEY 14FRX5CC LATEX	EA	1.0000	\$ 1.85	\$	1.85
	910100	000000000000029227	CATHETER FOLEY 5CCX14FR BALLOO	EA	1.0000	\$ 3.42	\$	3.42
			CATHETER THORACIC 28FRX20IN STERILE					
0000000001	910100	000000000000029275	STRAIGHT 6 EYE PVC CLEAR CS/10EA	EA	1,0000	\$ 4.22	s	4.22
	910100	000000000000035927	TRAY CATHETERIZATION FOLEY URI	EA	1.0000	\$ 9.13	s	9.13
	910100	000000000000438579	CATHETER VIRDEN RECTAL 17 30FR	EA	1,0000	\$ 23.06	S	23.06
	910100	000000000000003048	TRAY CATHETERIZATION FOLEY W/O	EA	2.0000	\$ 1.80	\$	3.61
	910100	000000000000029228	CATHETER FOLEY 5CCX16FR BALLOO	EA	2.0000	\$ 3.69	\$	7.37
	910100	00000000000082837	CATHETER URETHRAL 30CCX22FR FO	EA	2.0000	\$ 2.68	\$	5.36
	910100	000000000000012097	TRAY CATHETERIZATION URETH W/	EA	2.9999	\$ 1.72	\$	5.16
			CATHETER FOLEY 20FRX30ML LATEX					
			BALLOON URETHRAL 2 WAY ROUND TIP					
0000000001	910100	000000000000000423	LUBRICATED STERILE CS/12EA	EA	3.0000	#N/A	_	
	910100	000000000000048756	CATHETER SUCTION 10FR STRL W/	EA	3.0000	\$ 0.24	\$	0.71
		[CATHETER FOLEY BARDEX IC 16FR 5CC					
0000000001	910100	00000000000101207	BX/12EA	BX	3.0000	\$ 92.56	\$	277.68
	910100	00000000000043363	CATHETER VENTRIC 35CMX2.9X1.6M	EA	4.0000	\$ 57.57	\$	230.28
	910100	000000000000044173	CATHETER VENTRIC 80CMX1.5X0.7M	EA	4.0000	\$ 151.69	\$	606.75
			eM: CATHETER VENTRIC 80CMX1.5X0.7MM					
0000000001	910100	000000000000044173	EXT LUMBR HERMETIC CLS TP	EA	4.0000	\$ 151.69	\$	606.75
	910100	000000000000145094	KIT ICP MONITORING 4FR CATHETE	EA	4.0000	\$ 581.79	\$2	,327.14
0000003825	910100	000000000000447226	eM: CATHETER LICOX TUNNELING KIT	EA	4.0000	#N/A		
	910100	000000000000029226	CATHETER FOLEY 5CCX12FR BALLOO	EA	5.0000	\$ 3.85	\$	19.27
			BALLOON URETHRAL 3 WAY LUBRICATED					
0000000001	910100	00000000000037418	RADIOPAQUE STERILE RED PK/12CS/12EA	EA	5,0000	\$ 9.12	s	45.61
000000001	910100	000000000000470117	CATHETER SWAN-GANZ TD VIP CS/5EA	EA	5.0000	\$ 38.92	\$	194.60

Scope 3: Purchased Goods & Services Step 2. Decide on Accounting Method

GHG Protocol Scope 3 Standard

Mass-based Process LCA Models

• Uses **engineering** models to determine emissions from each process/material in the supply chain

Spend-based / EEIO Modeling

"Environmentally-Extended Input-Output Modeling"

 Use economic models at national scale

Scope 3: Purchased Goods & Services Step 2. Decide on Accounting Method

Scope 3: Purchased Goods & Services

Step 2. Decide on Accounting Method

Typical Challenges

- it's difficult to get procurement data
- it's difficult to categorize procurement data
- it's difficult to get mass quantities from procurement data
- a single supplier may provide hundreds of different items
- multiple suppliers may provide the same item
- suppliers change over time
- suppliers have limited / no information to provide
- suppliers only track their own Scopes 1-2 emissions, not supply chain
- services don't have mass...
- spend-based methods don't reflect a supplier's green initiatives

Spend-based Aggregation Disadvantages

• Using EEIO modeling, these things are the same:

\$1000 at Aspen Fine Furniture

Spend-based Quality/Price Disadvantages

Shipped from Netherlands to Supermarket: \$1.99/lb.

Farmer's Market: \$6/lb.

Spend-based Averaging Disadvantages

Cradle-to-Gate Greenhouse Gas Emissions for Twenty Anesthetic Active Pharmaceutical Ingredients Based on Process Scale-Up and Process Design Calculations

Abhijeet G. Parvatker,[†] Huseyin Tunceroglu,[‡] Jodi D. Sherman,[‡] Philip Coish,[§] Paul Anastas,^{§,||}[©] Julie B. Zimmerman,^{§,||,⊥}[©] and Matthew J. Eckelman^{*,#}[©]

What Modeling Approach is Best? • Both are needed!

- Spend-based methods are critical for reporting and identifying hotspots – needs to be comprehensive
 ~ REPORTING and STRATEGY
- Process-LCA is critical for making improvements or choosing among options

~IMPLEMENTATION

Scope 3: Purchased Goods & Services Step 2. Decide on Accounting Method

My Recommendation:

- Use *spend-based* method to count everything
- Use *average-data* method to count large-volume, homogenous items (like paper)
- Once you have this baseline, reach out to preferred suppliers to get information on specific items of interest using *hybrid* method

Scope 3: Purchased Goods & Services Step 3. Get Embodied Carbon Factors

Example: Supplier Specific Environmental Product Declaration (E______

Summary of Environmental Product I	Declaration	Environmental Impacts				
Central Concrete		Impact name	Unit	Impact per m3	Impact per cyd	
Mix 340PG9Q1		Total primary energy consumption	MJ	2,491 6.66E-2	1,906	
San Jose Service Area		Concrete water use (batch)	m3		5.10E-2	
EF V2 Gen Use P4000 3" Line	a 50% SCM	Concrete water use (wash)	m3	8.56E-3	6.55E-3	
		Global warming potential	kg CO2-eq	271	207	
		Ozone depletion	kg CFC-11-eq	5.40E-6	4.14E-6	
Performance Metrics		Acidification	kg SO2-eq	2.26	1.73	
28-day compressive strength	4,000 psi	Eutrophication	kg N-eq	1.31E-1	1.00E-1	
Slump	4.0 in	Playochemical ozone creation	kg 03-eq	46.6	35.7	

A sample EPD for a concrete mix design by Central Concrete Supply Co.

Credit: Central Concrete Supply

Scope 3: Purchased Goods & Services Step 3. Get Embodied Carbon Factors

Example: Average-data Tools

• Industry product calculators

 Aggregated embodied carbon factors (careful about where these come from)

• Life cycle inventory databases

• Published studies

Scope 3: Purchased Goods & Services

Step 3. Get Embodied Carbon Factors

Example: Spend-based tools

- Specific to the healthcare sector
 - Health Care Supply Chain Emissions Carbon Calculator: <u>https://healthcareghg.org/</u>
 - HCWH/Practice Greenhealth: https://practicegreenhealth.org/tools-and-resources/scope-3-ghg-emissions-accounting-tool
- Not-specific to healthcare
 - GHG Protocol/Quantis Scope 3 Evaluator: <u>https://quantis-suite.com/Scope-3-Evaluator/</u>
 - Many consulting company offerings...
 - USEEIO model:

https://www.epa.gov/land-research/us-environmentally-extended-input-outputuseeio-technical-content

Scope 3: Purchased Goods & Services Step 4. Multiply mass/value by EF for each category

demo data from: https://healthcareghg.org/

From Reporting to Implementation

From Reporting to Implementation

- NHS identified supply chain measures that they could influence
- Education and training are key to demand-side interventions

(slide courtesy of NHS)

Scope 3: Capital Goods

Category description

his category includes all upstream (i.e., cradle-to-gate) emissions from the production of capital goods purchased or acquired by the reporting company in the reporting year. Emissions from the use of capital goods by the reporting company are accounted for in either scope 1 (e.g., for fuel use) or scope 2 (e.g., for electricity use), rather than in scope 3.

- Easy, go through the same steps as for Purchased Goods & Services
- DO NOT DEPRECIATE OR AMORTIZE assign all emissions to purchasing year

• DO NOT COUNT EMISSIONS DURING USE

Scope 3: Up/Downstream Transp. & Distrbn.

If an HCO contracts for transportation, whether upstream or downstream, it is included in *Category 4*

Scope 3- Up/Downstream Transp. & Distrbn.

Step 1. Decide on method and collect/estimate data

- Fuel-based. If you know how much physical fuel is being used
- *Distance-based*. If you don't know the fuel use but you do know how far items are being shipped, and how
- *Spend-based*. If you only know how much you are spending (such as for contracted transportation)

Step 2. Collect emissions factors

- In the US, recommend USEPA Emissions Factors https://www.epa.gov/climateleadership/ghg-emission-factors-hub
- Outside US, see GHG Protocol Category 4 Guidance <u>https://ghgprotocol.org/sites/default/files/standards_supporting/Chapter4.pdf</u>

Step 3. Multiply!

Scope 3- Up/Downstream Transp. & Distrbn.

Example. My Boston-area hospital takes delivery of 20 tons of medical supplies from major manufacturer in Minnesota.

Step 1. I don't know how much fuel is combusted, choose distance-based method

20 hr 47 min (1,390.2 mi) via I-90 E

٢

Directions

Step 2. Use USEPA emissions factor:

CO₂ Factor CH₄ Factor N₂O Factor Vehicle Type Units (kg / unit) (g / unit) (g / unit) Medium- and Heavy-Duty Truck 1.450 0.013 0.0 vehicle-mile Passenger Car ^A 0.332 0.007 0.00 vehicle-mile ight-Duty Truck ^B 0 4 5 4 0.012 0 00 ehicle-mile Medium- and Heavy-Duty Truck 0.211 0.0020 0.0049 ton-mile 0.022 0.0017 0 000 Rail on-mile Waterborne Craft 0.041 0.018 0.00 on-mile Aircraft^C 1,165 0.035 ton-mile

Step 3. Multiply:

(1390.2 miles)*(20 tons)*[0.21+(0.002)(25)/1000+(0.0049)(298)/1000]=5.88 tons CO₂e

Scope 3: Processing/Use of Sold Products

- Emissions associated with downstream processing or use of sold health care devices or products
 - Cold chain medicines \rightarrow electricity use and refrigerants
 - Metered dose inhalers \rightarrow propellant
 - Home dialysis machine \rightarrow electricity use
 - (in practice, rarely accounted for)

- Collect information on sales of each relevant item
- Follow Scopes 1 and 2 guidance for each, but attribute to Scope 3 Categories 10+11
Scope 3: End-of-Life of Sold Products

- Emissions from waste management of sold items described in *Categories 10+11*
- (follow same directions as for Waste Mgmt. *Category 5*)

Estimate material quantities/types

- Determine prevalent treatment/disposal method
- Use USEPA emissions factors:

https://www.epa.gov/climateleadership/ghg-emission-factors-hub

Waste Management Hierarchy

Providence

Scope 3: Supply Chain Providence's Approach to Carbon Accounting

Beth Schenk, PhD, RN, FAAN

Executive Director of Environmental Stewardship

Moonshot Goal: Carbon Negative by 2030

Do all we can this decade to reduce emissions and transform health care to be *planet-safe*

Measurement using the WE ACT Scorecard –

Usage, cost, and carbon data	Each site	Monthly	Automated, transparent, accurate
------------------------------------	-----------	---------	--

Standard Online Course

Category 1: Purchased Good and Services Category 2: Capital Goods

- **Supplier-specific method** collects product-level cradle-to-gate GHG inventory data from goods or services suppliers.
- **Hybrid method** uses a combination of supplier-specific activity data (where available) and secondary data to fill the gaps. This method involves:
 - collecting allocated scope 1 and scope 2 emission data directly from suppliers
 - using secondary data to calculate upstream emissions wherever supplierspecific data is not available.
- Average-data method estimates emissions for goods and services by collecting data on the mass (e.g., kilograms or pounds), or other relevant units of goods or services purchased and multiplying by the relevant secondary (e.g., industry average) emission factors (e.g., average emissions per unit of good or service).
- **Spend-based method** estimates emissions for goods and services by collecting data on the economic value of goods and services purchased and multiplying it by relevant secondary (e.g., industry average) emission factors (e.g., average emissions per monetary value of goods).

- Spend based method for 2019 baseline
 - Supported by consultant
 - EEIO data (Environmentally Extended Input-Output). EPA 2016
- Hybrid method with major suppliers
 - Collecting Scope 1 and 2 emissions
 - Prorating the emissions we claim based on the percentage of their products we purchase

How did it go?

- Spend based not difficult but may not be accurate or meaningful. Approximately 40% of total.
- Hybrid method linked to known quantity of emissions, but information very difficult to get
- Use Mass

Category 4: Upstream Transportation and Distribution **Category 9:** Downstream Transportation and Distribution

- Fuel-based method, which involves determining the amount of *fuel consumed* (i.e., scope 1 and scope 2 emissions of transport providers) and applying the appropriate emission factor for that fuel
- **Distance-based method,** which involves determining the *mass, distance, and mode* of each shipment, then applying the appropriate mass-distance emission factor for the vehicle used
- Spend-based method, which involves determining the amount of *money spent* on each mode of business travel transport and applying secondary (EEIO) emission factors.

Providence

- Upstream:
 - Working to understand emissions of primary distributor
 - Spend based method for 2019 baseline
 - % added to categories 1 and 2
- Downstream: Not relevant

Category 10: Processing of Sold Products Category 11: Use of Sold Products Category 12: End of Life Treatment of Sold Products

For Providence: Not relevant

Accuracy:

- Depends on emission factors
- Depends on boundaries
- Depends on interpretation of GHGP

Accountability:

 All steps along the supply chain (for example: raw materials, transportation, manufacturing, packaging, distribution, use, end-of-life treatment) count the same emissions.

Activation:

- Complexity of accounting may stymie action
- Lack of clear accountability may hinder action
- Excess accountability may slow action

What do we do with this information?

Prevention

Patient Empowerment

Lean Pathways

Low carbon alternatives

Brick by Brick... Emissions Analysis and Reduction Projects

- Linen Analysis
- Inhaled medications
- Carbon intensity of meals
- Blue wrap analysis
- Embodied carbon construction
- Leased Vehicles
- Computer Power Management
- Reprocessed products
- Surgical Supply Optimization

Clinical Supply Optimization

• Dave Wilson, Six Sigma Black Belt, Process Improvement, Oregon

 Brian Chesebro, MD, Medical Director, Environmental Stewardship, Oregon

Background

- Surgical care is resource intensive and prone to inefficiency and waste
- Surgical preference cards are common to determine what products are used (or opened and not used)
- Inefficiency leads to
 - Discard of new items
 - Excessive sterilization costs
 - Labor costs
 - Environmental impacts emissions, energy, water, waste

Surgical Supply Optimization

Surgical Supply Optimization

╬

╬

Procedure Comparison Analyzer (Version 1.1) Allows users to compare their "ACTIVE" preference card to peers doing the same procedure Refresh Free

Last Refresh

Data Source

(†

Θ	Home Supplies	Inst	rumei	ntation	Implar	nt Trays	Ec	quipm	ent	Me	eds
	Surgeon Name Base Proc Name		LAPAROSCOPIC APPENDECTOMY				LAPAROSCOPIC APPENDECTOMY				
	Card Location		OSV MAIN OR (14051439)			OSV MAIN OR (14090720)					
Catalog No	Supply Description	Open	PRN	Pick Qty	Pick Cost	CE Impact	Open	PRN	Pick Qty	Pick Cost	CE Impact
GIA45AVM	RELOAD ENDO GIA VASC/MED 45MM	0	2	2		51.35	0	2	2	1000	51.35
426H	SUT MCRYL 4-0 PS-2 27IN Y426H	2	0	2	2222	1.82	2	0	2	1222	1.82
503H	SUT VCL 0 UR-6 27IN VI J603H		0	2	2000	0.58	1	0	1		0.29
250070620	IRRIGATOR SUCT W/TIP	1	0	1		5.58	0	1	1		5.58
30667	PACK LINEN CHNG OVER	1	0	1	2000	0.00	1	0	1		0.00
73050G	BAG SPECI ENDO CATCH 10MM	1	0	1	2000	7.20	1	0	1		7.20
006S	DECANTER VIAL NDLESS VENT		0	1	2000	0.14	1	0	1		0.14
F7114	SOL IRRIG WATER 1000ML	1	0	1	2000	0.45	1	0	1		0.45
2234	BLANKET BAIR HUG UPPER WHT	0	1	1	2000	0.87	0	1	1		0.87
5651-230	CANISTER SUCT 3000CC W/LID	0	1	1	2000	0.36	0	1	1		0.36
1002	GOWN WRMG BAIR PAW 2-PRT STD	1	0	1	2000	1.92	1	0	1		1.92
888266148	TUBE NG SALEM SUMP 18FR	1	0	1	2000	0.50	1	0	1		0.50
30815	APPLIC CHLRPRP HI LITE 26ML	1	0	1	2000	1.04	1	0	1		1.04
4UX2044	CIRCUIT ANES ADLT 108IN	1	0	1	2000	1.12	1	0	1		1.12
TS02	TROCAR CANN SEAL Z-THRD 5X100	1	0	1	2000	1.44	1	0	1		1.44
WNDSCL1500	LINER SFT SUCT CANSTR 1500CC	0	1	1	2000	0.19	0	1	1		0.19
YNJ901028B	PACK CUST GEN LAPAROSCOPY V	1	0	1	2222	9.42	1	0	1		9.42
YNJP2401	GOWN SURG N-REINF STRL LG	1	0	1	2222	0.35	1	0	1		0.35
VNJP3103	DRAPE ABDOMINAL MAJOR	1	0	1	2222	1.19	1	0	1		1.19
WNJSF02GS	TOWEL SETY GOLD STRL N-WOVEN	1	0	1	2222	0.17	1	0	1		0.17
7507	ELCTRD GRND PAD REM ADLT	1	0	1	2222	0.42	1	0	1		0.42
GIAUSTND	STAPLE ENDO GIA ULTRA HNDI 12MM	0	1	1	2222	16.57	1	0	1		16.57
ION081541	STRAP PATIENT SAFETY	1	0	1	2222	0.34	1	0	1		0.34
76620	CUP ENDO CUP 5MM	-		-	2222		0	1	1		23.47
1-345	KIT LAPSCP CLEARIEV VIS SYS				12222		1	0	1		9.53
D72LS70	GLV SURG PROTEXIS LX HYDRO 7	1	0	1	2222	0.14					
D72PL75X	GIV SURG PLCLASS PROT SZZ 5	-		-	2222	0.41	1	0	1		0.27
D73F880	GIV SURG PROTEXIS PLPE LE 8				12222		1	0	1		0.22
71211	BLADE SCALP SS 11				12222		1	0	1		0.04
71215	BLADE SCALP SS 15	1	0	1	2222	0.04	-	Ŭ	-		0.01
0-5163-001	FLCTRD ENDO MPLR IL-HK 5MMX32CM	-	Ŭ	-	2222	0.01	0	1	1		4 64
800361	BAG DRAIN LIBOL SURFETER 16FR				12222		1	0	1		1.60
2201	NDL INSUE 120MM STRI				12222		1	0			2.00
HIOT01-08	ADH TISSUE LIQUIBAND OCTVI	1	0	1	2222	2.03	-	×	-		
TR02	TROCAR KILBLDE 7-THR 5X100MM	-			2222	2.05	1	0	1		2 70
TB73	TROCAR KILSHID 7-THR 12X100MM				22223		1	0	1		4 14
TRO3	TROCAR KILSEP OPT 7THRD 5X100	1	0	1	2000	2 70	-		-		1.41
TR73	TROCAR KII 7-THR OPT 12X100MM	1	0	1	2000	4.14					
YNI04052	ECP ADSON W/TEETH STRI		5	-			0	1	1		0.19
VNIP2406PI	DRAPE UTILSTRI 15X26IN 4/PK						1	0	1		0.04
IAR36	BLADE HARM HAR36						0	1	1		75.09
106T	SUT VCLO SUTPK VLI106T						0	1	1		0.79
OB003T	ADHSV TINT DOME TIP BUTY						1	0	1		2.25
4072169204	TOWEL OF STEL BUILE 17Y27 A/PK	1	0	1	2222	0.27	-		-	1993) 1993	2.25
SG-14F	GRASPER SLIT SPI 14GA 15CM	-	0	1		0.27	4	0	4		3 22
01224V	SOLO BET NACI 1000CC	0	0	0	2222	0.00	1	0	-	1000	0.00

╬

Pilot Hospital- 24 operating rooms

GHG	Energy	Water	\$ saved	Waste
reduction	saved	saved		reduced
(mtCO ₂ e)	(kWh)	(gallons)		(tons)
834	450,000	820,000	\$ 1.77 M	~10

Progressive Scalability- automation, expansion

- Involve end-users in all stages of development
- Avoid interference with direct patient care (alert fatigue)
- Feed data as close to decision-point as possible
- Provide comparisons
- Consolidate data

"We are surrounded by data but starved for insights."

Jay Baer

Health for a Better World

Thank You

NAM Carbon Clinic – Scope 3 Goods and Services Yale New Haven Health System

Jodi Sherman, MD

YNHHS Medical Director of Sustainability December 15, 2022

YaleNewHaven**Health**

5+ hospitals throughout CT, RI, NY (Flagship hospital, 1590 beds)200+ clinics

Agenda: YNHHS Goods and Services Accounting

- total goods and services CO_{2e}
- metered dose inhaler (MDI)
- intravenous drugs
- pulse oximeter

Disclosures: Canadian Institutes for Health Research Commonwealth Fund Institute for Healthcare Improvement

YNHHS Scope 3: Purchased Goods FY2021

Source: YNHHS Supply Chain, YNHHS Center for Sustainable Healthcare and <u>www.healthcareghg.org</u>.

Abbreviations: BH: Bridgeport Hospital, GH: Greenwich Hospital, LMH: Lawrence + Memorial Hospital, WH: Westerly Hospital, YNHH: Yale New Haven Hospital

YNHHS Scope 3: Purchased Services FY2021

Source: YNHHS Supply Chain, YNHHS Center for Sustainable Healthcare, and www.healthcareghg.org

Abbreviations: BH: Bridgeport Hospital, GH: Greenwich Hospital, LMH: Lawrence + Memorial Hospital WH: Westerly Hospital, YNHH: Yale New Haven Hospital **Yale** SCHOOL OF PUBLIC HEALTH

Center on Climate Change and Health

YNHHS Scope 3: Purchased Goods & Services FY2021

Source: YNHHS Supply Chain, YNHHS Center for Sustainable Healthcare, and www.healthcareghg.org

Abbreviations: BH: Bridgeport Hospital, GH: Greenwich Hospital, LMH: Lawrence + Memorial Hospital, WH: Westerly Hospital, YNHH: Yale New Haven Hospital

Inhalers for reactive lung disease

The New York Times

The Cruel Irony of Inhalers That Make Climate Change Worse

July 23, 2022

- Hydrofluroalkane (HFA) propellants in metered dose inhalers (MDIs) potent GHGs
 - One albuterol inhaler has similar carbon output as driving mid-size car ~200 miles
- 55 million MDIs dispensed in US in 2019
- 3% of National Health Service (NHS) total emissions from MDIs
- Multiple alternatives: dry power inhaler (DPI), softmist inhaler (SMIs), nebulizers
- Sweden now 88% DPIs, and other nations and health systems following suit

Yale SCHOOL OF PUBLIC HEALTH Center on Climate Change and Health

US EPA 2021 Market Characterization of the U.S. Metered Dose Inhaler Industry, ICF 2021 Tennison et al, *Lancet Planetary Health* 2020 Janson et al, *Thorax* 2019

Top-down v Bottom-up: Metered Dose Inhaler (MDI) emissions

- Propellant Global Warming Potential (GWP₁₀₀)
 - HFA-134a = 1,430
 - HFA-227ea = 3,220
- Total hospital MDI CO_{2e} emissions
- Top-down: 0.223 x \$\$
- Bottom-up:

YNHHS Inhaled MDI Emissions 2019

Source: YNHHS Supply Chain, YNHHS Care Signature, and YNHHS Center for Sustainable Healthcare

Abbreviations: BH: Bridgeport Hospital, GH: Greenwich Hospital, LMH: Lawrence + Memorial Hospital, WH: Westerly Hospital, YNHH: Yale New Haven Hospital

Are MDIs Scope 1 or Scope 3?

Scope 1

- <u>In-patient use</u>: propellent released directly from the hospital
- Propellant emissions are known, very high, dwarf those of rest materials, and dwarf cost-based emissions calculations
- Similar story as inhaled anesthetics accounting

Yale SCHOOL OF PUBLIC HEALTH Center on Climate Change and Health

Scope 3

- <u>Out-patient use</u>: propellent released indirectly, outside of the health syst, down stream
- #/type of prescriptions from health system known
- Distribution/utilization of the devices unknown to health system (unless they own the pharmacy)
- What about ALL outpatient prescriptions? If a health system accounts for MDI prescriptions, then they should count all prescriptions

Strategic Management: Inhaler emissions mitigation

- Reduce unnecessary treatments
- Choose less carbonintensive treatments
- Reduce waste
- Take-back programs for proper waste treatment (high-temperature incineration)

YNHH encounters with MDI waste

Encounters with associated inhaler waste:

- Patients moved between wards and dispensed new device
- Patients not allowed to take MDI home

Source: YNHHS Pharmacy, YNHHS Care Signature, and YNHHS Center for Sustainable Healthcare

YNHH wasted MDI doses

- Utilization (doses given):
 - ICS + LABA: \$226,913
 - SABA: \$61,160
- Wasted (unused doses):
 - ICS + LABA: \$93,034 (41%)
 - SABA: \$42,812 (70%)

Source: YNHHS Pharmacy, YNHHS Care Signature, and YNHHS Center for Sustainable Healthcare

Source: YNHHS Pharmacy, Care Signature, and YNHHS Center for Sustainable Healthcare

Nebulizer treatment: 15.84 minutes MDI treatment: 11.52 minutes

Source: YNHHS Pharmacy, Care Signature, and YNHHS Center for Sustainable Healthcare

YNHHS Inhaled MDI Emissions 2019

Source: YNHHS Supply Chain, YNHHS Care Signature and YNHHS Center for Sustainable Healthcare

Abbreviations: BH: Bridgeport Hospital, GH: Greenwich Hospital, LMH: Lawrence + Memorial Hospital, WH: Westerly Hospital, YNHH: Yale New Haven Hospital

Top-down v Bottom-up: intravenous (IV) drugs

Drug	Total ML Opened	Total ML Used	Total ML Wasted	% Wasted
Propofol	9900	7198.2	2701.8	27.29%
Neostigmine	2190	830	1360	62.10%
Ketamine	660	122	538	81.52%
Rocuronium	2425	1943.1	481.9	19.87%
Dexamethasone	800	322.25	477.75	59.72%
Zofran	790	786.5	3.5	0.44%
Fentanyl	2195	1455.1	739.9	33.71%
Glycopyrrolate	1235	880	355	28.74%
Midazolam	558	537	21	3.76%
Midazolam	185	78	107	57.84%
Succinylcholine	850	392.5	457.5	53.82%
Toradol	57	51.9	5.1	8.95%
Lidocaine	1785	1368.9	416.1	23.31%
Ephedrine (diluted)	1200	347.4	852.6	71.05%
Labetalol	1380	303	1077	78.04%
Hydromorphone (diluted)	2420	945	1475	60.95%
Phenylephrine (diluted)	14400	523.3	13876.7	96.37%
SUM			24945.85	

- Multiple studies, overall volume of *anesthesiologyprepared* drug waste ranges from 30-80%
- Problems/solutions apply to all IV drugs and care locations

Top-down v. Bottom-up: Intravenous Drugs

Yale SCHOOL OF PUBLIC HEALTH Center on Climate Change and Health

Parvatker, et al, ACS Sust. Chem Eng. 2019

Operating Room intravenous drug waste

- 20 common OR drugs, one hospital
- \$1.2 million wasted annually
- 22,514 kg CO_{2e}
- Similar to driving 54,778 miles in standard passenger vehicle

Yale SCHOOL OF PUBLIC HEALTH Center on Climate Change and Health

Tunceroglu, et at

Why so much drug waste?

- Over-sized vials
- Regulation
- Contamination
- Over-preparation
- Expiration

We routinely waste 99% of insulin in the OR

Reduce waste: "pre-filled" syringes and bags

Original manufacturer "emergency drugs" \$\$\$ Longest shelf life

In-house pharmacy					
splits vials					
\$					
Shorter shelf life					

Third-party vendor splits vials \$\$ Medium shelf life

Do pre-filled syringes reduce waste?

Yale SCHOOL OF PUBLIC HEALTH Center on Climate Change and Health

Courtesy H. Hopf

Data-driven solutions for waste reduction: insulin intra-op doses

- Electronic Health Record: utilization
- Integration with procurement data management system
- Strategic guidance for pharmacy splitting for greatest efficiency

Optimizing drug package size and concentration for waste reduction and improved safety

Reduce vial size

Provider performance reports: behavior change

Infortent la contreaten

Medication Waste by Provider

Provider Name	Surgery Date Range	Service	96 Waste		
SHERMAN, JODI D	Last 12 months	(AII) •	📒 % Waste (Service Avg)		

Medication Name 🗧	Surgical Cases	Packages Opened	% Waste 🕜	% Waste	Expense Wasted	
PHENYLEPHRINE 10 MG/ML INJECTION SOLUTION	45	46	99.9%		\$162	$ CO_{20}$
DIPHENHYDRAMINE 50 MG/ML INJECTION SOLUTION	8	8	98.3%		\$5	Ze
EPINEPHRINE 1 MG/ML INJECTION SOLUTION	1	1	98.0%		1 \$496	
DEXMEDETOMIDINE 100 MCG/ML INTRAVENOUS SOLUTION	22	24	97.7%		1 \$165	_
EPHEDRINE SULFATE 50 MG/ML INTRAVENOUS SOLUTION	35	35	97.0%		\$969	
ATROPINE 1 MG/ML INJECTION SOLUTION	1	1	96.8%		-	Analogous
KETOROLAC 30 MG/ML (1 ML) INJECTION SOLUTION	95	95	96.0%		II \$215	
FUROSEMIDE 10 MG/ML INJECTION SOLUTION	1	1	96.0%		\$1	to inhaled
METRONIDAZOLE 500 MG/100 ML-SODIUM CHLORIDE(ISO) INTRAVE.	1	1	96.0%		\$1	
MIDAZOLAM (PF) 5 MG/ML INJECTION SOLUTION	1	1	96.0%		\$1	anacthatia
ΓΙΡΡΛΕΙ ΛΥΔΓΙΝ ΔΩΛ ΜG/20Λ ΜΕΙΝ 5 % ΠΕΥΤΡΛΚΕ ΙΝΤΡΔVΕΝΛΗς ΡΙ	Δ	4	95 8%		\$10	anestnetics
Service						
(All)	400	6,816	33.8%		\$9,095	
TOTAL (All Services)	400	6,816	33.8%	_	\$9,095	

Pulse Oximeter Probes

Global Warming Potential (kg CO₂ eq) of Disposable, Reprocessed, and Reusable Pulse Oximeters (5 days)

Mueller, Ishi, et al.

Supply Chain carbon accounting of the future

Supports external accounting and internal strategic management

- <u>Manufacturer</u>:
 - product-level life cycle emissions labeling
- <u>Distributer</u>: procurement data
 - product-level emissions
 - Purchased, used, expired, returned
- Electronic Health Records: utilization data
 - Patient-specific data (co-morbidities and treatments)
 - Provider-specific data

Acknowledgements

Jodi.Sherman@yale.edu

- Jessica Bootle, PharmD
- Diana LeMieux, PharmD
- Molly Leber
- Teresa Papstein
- Amber Zaniewski, PharmD
- Michael Nay, MBA
- Nancy Kim, MD, PhD
- William Fowler, MD
- YNHHS Care Signature Team

• Zoe Zhang, MS, MPH

- Brian Chesebro, MD
- Bibek Shrestha
- Hussein Tunceroglu, MD
- Elena Bukanova, MS, MD
- Tobias Mueller, MS
- Momoko Ishi, MS, MPH
- Abhijeet Parvatker, PhD
- Matthew Eckelman PhD
- Kim Walker, Pharm D

YaleNewHavenHealth

Supplementary Table

Carbon Emission from Purchased Services Details and Ranking

		ВН		GH		LMH		WH		YNHH		Grand Total	
Vendor Sub-Category Vendor Category	Vanday Catagony	Rank of I	Rank of t	Rank of	Rank of t								
	vendor Category	Spend	CO2e	Spend	CO2e	Spend	CO2e	Spend	CO2e	Spend	CO2e	Spend	CO2e

The table is sorted on total CO2 emission of the entire system in descending order, including hospitals only, including all Vendor Sub-categories available for analysis. Due to page limit, only the 20 highest CO2 emissions categories are shown on this slide.

Source: YNHHS Supply Chain Analytics.

Data includes purchased services from Oct 2020 through Sep 2021, including all Yale New Haven Health System hospitals and non-acute clinics outside of hospital main campuses (grouped with the hospital main campus which they are most adjacent to). Health Service Corporation, and Northeastern Medical Group are not shown in the table. Vendors (\$100k-\$500k Vendors) that have not been categorized at YNHHS are excluded from analysis.

Supplementary Table

Carbon Emission from Purchased Goods Details and Ranking

		BH		GH		LMH		WH		YNHH		Total	
UNSPSC Family Description	Segment Description	Rank of	Rank of t										
		Spend	CO2e										

The table is sorted on total CO2 emission of the entire system in descending order, including hospitals only. Due to page limit, only the 20 highest CO2 emissions categories are shown on this slide.

Source: YNHHS Supply Chain Analytics.

Data includes purchased goods from Oct 2020 through Sep 2021, including all Yale New Haven Health System hospitals and non-acute clinics outside of hospital main campuses (grouped with the hospital main campus which they are most adjacent to). Health Service Corporation, and Northeastern Medical Group are not shown in the table.