

Collaboration for a Value & Science-Driven Health System

Digital Health and Evidence Mobilization Action Collaboratives Joint Webinar

Developing a nationwide coordinated system of shared health data with insight from COVID-19

April 22, 2021 | 9:30 AM – 12:30 PM EST

Share your thoughts!

2 @theNAMedicine

NATIONAL ACADEMY OF MEDICINE

Welcome & Introduction

Michael McGinnis Leonard D. Schaeffer Executive Officer

Evidence Mobilization Action Collaborative Chairs

Richard Kuntz Medtronic

Richard Platt Harvard University

Digital Health Action Collaborative Chairs

Reed Tuckson Tuckson Health Connections

Jonathan Perlin HCA Healthcare

NATIONAL ACADEMY OF MEDICINE

NAM LEADERSHIP CONSORTIUM

Stakeholder leaders in private, public, and independent organizations from key health sectors, collaborating under the auspices of the National Academy of Medicine for action on their common interests in advancing effectiveness, efficiency, equity, and continuous learning in health, medical care, and biomedical science.

NAM LEADERSHIP CONSORTIUM

Advancing the Learning Health System

A learning health system is one in which science, informatics, incentives, and culture are aligned for continuous improvement, innovation, and equity—with best practices and discovery seamlessly embedded in the delivery process, individuals and families active participants in all elements, and new knowledge generated as an integral by-product of the delivery experience.

Leadership Consortium Charter 2006

COLLABORATIVE ACTION

COLLABORATIVE ACTION

SCIENCE: Evidence Mobilization Action Collaborative FOCUS: *continuous learning through real-world evidence*

INFORMATICS: Digital Health Action Collaborative

FOCUS: digital infrastructure & data as a core utility

INCENTIVES: Value Incentives & Systems Action Collaborative FOCUS: payment based on health outcomes for people and populations

CULTURE: Culture, Inclusion & Equity Action Collaborative FOCUS: full and equitable health engagement for people and communities

CORE ELEMENTS FOR EACH COLLABORATIVE

ORGANIZATIONAL NETWORKS

ANCHOR PRINCIPLES

KEY PROGRESS INDICATORS

COLLABORATIVE PROJECTS

Agenda

/ 3 -144	
Welcome	9:30 – 9:45 AM
Michael McGinnis, National Academy of Medicine Richard Platt, Harvard University	
Strategic Framing	9:45 – 10:05 AM
Facilitator: Michael McGinnis, National Academy of Medicine Nakela Cook , PCORI Peter Lee , Microsoft Sarah Green , National Academy of Medicine	
Insights driven by the burning platform of COVID-19	10:05 – 10:50 AM
Facilitators: Richard Kuntz, Medtronic & Richard Platt , Harvard David Meyers , AHRQ/CHARGE & Ken Sands , HCA Healthcare/CKEN Gersing, NIH/NC3	d University CHARGE
Nation-wide Data Governance: Progress and Promise	10:50 – 12:05 PM
Facilitator: Reed Tuckson , Tuckson Health Connections Micky Tripathi , ONC Peter Margolis , Cincinnati Children's Hospital Medical Center; Amy Abernethy , FDA	ImproveCareNow
Open Discussion	12:05 – 12:25 PM
Richard Kuntz, Medtronic & Michael McGinnis, National Acad	emy of Medicine
Closing Remarks & Adjourn	12:25 – 12:30 PM

Michael McGinnis, National Academy of Medicine

Zoom Instructions

Panelists

- Always keep your line muted unless you are called on to speak
- If possible, turn on video while speaking to the group. To enable video click the 'start video' option at the bottom left of your screen

Attendees - Q & A

- Please type in questions into the Q&A located at the bottom of the screen on your zoom interface
- Question format:
 - Your name and organization
 - To whom
 - Question

Audio Settings ^ U Leave Meeting Chat Raise Hand Q&A

Collaboration for a Value & Science-Driven Health System

Strategic Framing

COVID-19 Sector Impact Assessments Lead Authors

Sector Assessment	Lead Authors
Patients, families, & consumers	CEO, Families USA Director, Center for Health Transitions CEO, AAMC
Clinicians & professional societies	CEO, American Medical Association CEO, American Academy of Nursing
Care delivery organizations	CEO, Vanderbilt University Medical Center CEO, Geisinger
Digital health	Principal Deputy Commissioner, FDA Research Director, Microsoft
State & local public health	Chief Health Officer, Google President, Missouri Health Foundation
Health payers	Former Administrator, CMS COO, Optum Care Solutions
Health product manufacturers & innovators	Global R&D Head, J&J/Janssen CEO, Novartis
Health & biomedical research	Executive Director, PCORI Deputy Director, NIH
Quality, safety, & standards	Deputy Under Secretary, VA SVP, Humana

DISCUSSION PAPER

Public Health COVID-19 Impact Assessment: Lessons Learned and Compelling Needs

Karen DeSalvo, MD, MPH, MSc, Dell Medical School at The University of Texas at Austin; Bob Hughes, PhD, Missouri Foundation for Health; Mary Bassett, MD, MPH, Harvard University; Georges Benjamin, MD, American Public Health Association; Michael Fraser, PhD, CAE, Association of State and Territorial Health Officials; Sandro Galea, MD, MPH, DrPH, Boston University School of Public Health; J. Nadine Gracia, MD, MSCE, Trust for America's Health; and Jeffrey Howard, MD, MBA, MPH, former Public Health Commissioner, Kentucky

April 7, 2021

About the NAM series on Emerging Stronger After COVID-19: Priorities for Health System Transformation This discussion paper is part of the National Academy of Medicine's Emerging Stronger After COVID-19: Priorities for Health System Transformation initiative, which commissioned papers from experts on how 9 key sectors of the health, health care, and biomedical science fields responded to and can be transformed in the wake of the COVID-19 pandemic. The views presented in this discussion paper and others in the series are those of the authors and do not represent formal consensus positions of the NAM, the National Academies of Sciences, Engineering, and Medicine, or the authors' organizations. Learn more: nam.edu/TransformingHealth

Introduction

Gains in life expectancy and quality of life over the course of American history can be attributed to forward-looking investments in public health infrastructure [1]. For example, the creation of municipal public health authorities in the 19th century supported improvements in sanitation and reduced the mortality burden from infectious diseases such as typhoid and cholera. Likewise, strategies to promote healthier environments and improve access to clinical services have improved the prevention and management of chronic diseases such as cardiovascular disease and cancer. In addressing each population health challenge, the

public health sector has played a multifaceted role, from surveilling the causes and consequences of disease (e.g., the National Notifiable Diseases Surveillance System), to convening stakeholders across sectors to develop coordinated solutions (e.g., historical collaborations with housing authorities), to informing policymakers and the public about best practices (e.g., resources to promote tobacco cessation) [2,3,4]. These interdisciplinary functions are more important than ever due to the complexity and scope of population health challenges in the modern era. For the first time in generations, life expectancy in the United

Perspectives | Expert Voices in Health & Health Care

🕜 NATIONAL ACADEMY OF MEDICINE

States (U.S.) has begun to decline, with primary driv-

Nakela Cook, MD, MPH

Executive Director, Patient-Centered Outcomes Research Institute (PCORI)

Peter Lee, PhD

Corporate Vice President, Research and Incubations, Microsoft

Sarah Greene, MPH

Strategic Advisor, National Academy of Medicine

Data Sharing During the COVID-19 Pandemic

Insights from the COVID-19 Biomedical Research Sector Assessment

Nakela L. Cook, MD, MPH Executive Director, PCORI

A Stress Test and Learning Opportunity Research Sector's Experience with Data Sharing During COVID-19 DCOI

Advancing Data Sharing in Research

Embracing Opportunities in a Crisis for Short and Long-term Learning and Impact

COVID-19 Use Case for Data Sharing Lessons Learned

Health Data Sharing Governance Framework: Do we regress to the mean when the urgency is gone or capitalize on the progress made?

Impact Assessment: Digital Health and COVID-19

Amy Abernethy, Peter Lee, David Shaywitz Murali Doraiswamy, Adi Gundlapalli, Subha Madhavan, Kevin Shulman, Jim Weinstein

Digital Health: Observations Across All Sectors

- Telehealth became real, practical, and essential during COVID-19 response.
- Data proved critical for coordination, forecasting, and quality, but also a timeconsuming, and sometimes chaotic, burden on clinicians and administrators.
- Data interoperability and scaling proved to be more theory than reality in health and public health.
- Effective public-private partnerships proved essential in crisis response.
- The digital divide was occasionally bridged but more frequently contributed to and often exacerbated health inequities.
- Digital and AI tools became key to advancing knowledge and coping with information

Digital Health Across All Sectors

Sectors	Digital Health Challenges and Opportunities							
	Telehealth became real	Data proved critical for coordination, forecasting & quality	Need for data interoperability	Effective public- private partnerships	Addressing health inequities	Al tools to address information overload		
1. Health product manufacturers	X	X		X				
2. Clinicians & Professional Societies	x	X	X		x	x		
3. Payers		X	X					
4. Care delivery organizations	x	X	X		x			
5.Quality & Safety		X	X					
6.Patients/Families/Comm unities	X		x		x			
7. Public Health		X	X	X				
8. Research	X		Х			Х		

Digital Health in COVID-19 Response

The U.S. health care community looked to the interconnected system of devices, digital platforms, and data to help address questions [critical for COVID-19 response], since surely the answers lurked within the petabytes of digital data being generated daily by the health care system. The notion was that it only needed to be extracted, integrated, and disseminated in useful form – actions that are commonplace in many other industries with the use of a wide range of digital tools.

Instead, during the first nine plus months of the pandemic in the U.S., decision-makers were essentially "flying blind…" Legions of technologists rushed to address these crises in access, connectivity, and interoperability. Hundreds, and perhaps thousands, of new data systems were created and deployed with incredible speed… But these valiant efforts, while locally impactful, also resulted in the creation of yet more data silos that not only struggled to interoperate with the rest of the health care ecosystem, but contributed even more to its staggering, ineluctable complexity.

Health Data: Water, Water, Everywhere...

• Data without architecture leads to data silos

One is reminded of the poem, *The Rime of the Ancient Mariner*, which contains the verse, "Water, water, everywhere, nor any drop to drink." Despite nearly complete digitization, and so many tools at our disposal for data analysis, machine learning, AI, and visualization, the health care community remained thirsting for the high-quality, actionable data upon which these technologies, patients, and caregivers foundationally depended, including data not only from health systems, but from all other relevant sources -- personal, social, infrastructural, biological, population-wide, and more. Thus, the tremendous advances in computer science that today powers global supply chains, massive retail markets, internet search, social media, and more, remained and still remains a stark contrast to the ongoing creation of yet more inaccessible data silos in health care. The ongoing challenges encountered in vaccine distribution and monitoring are only the most current and urgent example of the existing limitations of data visibility, fluidity, transparency, and access.

Collaboration for a Value & Science-Driven Health System

Advancing Progress toward Health Data Sharing

Sarah M. Greene, MPH

April 22, 2021

DHAC/EMAC Joint Meeting

(Biggest) Barriers to Sharing Health Data

THE LEARNING HEALTH SYSTEM SERIES

DANIELLE WHICHER, MAHNOOR AHMED, SAMEER SIDDIQI, INEZ ADAMS, CLAUDIA GROSSMANN, AND KRISTIN CARMAN, EDITORS

HEALTH DATA SHARING TO SUPPORT BETTER OUTCOMES

BUILDING A FOUNDATION OF STAKEHOLDER TRUST

1 × 11

Read the publication at nam.edu/DataSharingTrust

Key Findings from the Report

CULTURAL, ETHICAL, REGULATORY, AND FINANCIAL BARRIERS TO DATA SHARING, LINKAGE, AND USE

Concern regarding controversial uses of data such as achieving competitive **HEALTH CARE** advantage or rationing care, etc. EXECUTIVES Misalignment of financial and Differing stakeholder beliefs Concern regarding the financial costs associated other incentives (fear of penalties about whether data should be with sharing data when the ability for individual associated with data breaches. freely shared actors to appropriate value (achieve an ROI) from reputational risk, etc.) the pooled data is underdeveloped. Costs associated with data procurement RESEARCH PATIENT AND Lack of OVERSIGHT FAMILY Trust LEADERS LEADERS Organizational variability in Low recognition of patients and family interpretations of regulations and members as data users and responsibilities data providers Operational challenges (uneven data Lack of understanding of the value quality, lag time between data collection of patient-generated data and data availability, etc.)

Lack of agreed upon practices and principles regarding patient data access, data control, and data ownership

Proposed Action Steps

- 1. Develop business case for data sharing
- 2. Create and prioritize use cases
- 3. Engage in a public information campaign
- 4. Incentivize data sharing via new payment models
- 5. Institute legislation and policy levers
- 6. Forge consensus on data stewardship, accessibility, and control principles
- 7. Build trust & transparency

11 Data Sharing Exemplars across the health/care ecosystem

- <u>Aim</u>: Develop an accessible reference, based on real-world examples, to show how organizations can collaborate to share and link data while safeguarding consumer interests around data protection and privacy
- Anchor: Map case studies to common barriers identified in the report
- <u>Case Study Summaries</u>: value proposition, success factors, barriers they addressed, data governance and organizational governance, advice for others, and "magic wand request"
- *Timeline*: In progress, anticipated completion Nov 2021

Prevalent Themes from the Case Studies – Value Proposition

Data get better with use--

Sharing data will enable discovery, lead to better care, and enhance reputation *"Every single touchpoint provides information about our patients and populations."*

If we just let it sit there, we are not fulfilling part of our responsibility as a health system."

Prevalent Themes from the Color Case Studies – Build the Evidence Base

Several groups are publishing their experiences, and promulgating transparency and engagement *"We need to learn from past incidents in which patient trust was damaged as a result of data breaches or intentional data sharing without patient consent...*

We want to <u>contribute</u> to the evidence base on engagement and data sharing and simultaneously <u>use</u> that evidence to shape our policies and procedures, and <u>create</u> a roadmap for others."

The Imperative: Cultivating Trust

Thank you to Case Study Project Collaborators Noor Ahmed & Peak Sen-Chua!

Collaboration for a Value & Science-Driven Health System

Insights driven by the burning platform of COVID-19

David Meyers, MD

Acting Director, Agency for Healthcare Research and Quality (AHRQ)

Ken Sands, MD, MPH

Chief Epidemiologist and Chief Patient Safety Officer, HCA Healthcare

Ken Gersing, MD Director of Informatics, National Institutes of Health

The COVID-19 Consortium of HCA Healthcare and Academia for Research GEneration (CHARGE)

David Meyers Acting Director

April 22, 2021

AHRQ's Role

- Making evidence-based, patientcentered care a reality for all Americans
- While science and research to discover cures is needed, *science, research, and implementation to improve care is imperative*.

AHRQ's Vision, Aim and Core Competencies: Why, What and How

Innovation in a Time of Crisis

 The urgency of the COVID-19 pandemic provided motivation to overcome conventional barriers in healthcare delivery, healthcare evidence generation, and healthcare data sharing.

A Few Words About HCA Healthcare

187 hospitals

- 154 freestanding surgery centers
- > 1,000 physician practices
- > 120 urgent care centers
- 37 million patient episodes annually
- Located in 21 states and UK
- Approximately 5% of major hospital services in U.S. including ~ 2.4 million admissions
- ~ Hospitals range from complex tertiary referral and academic medical centers to urban and suburban community medical centers
- ~ 287,000 employees, including
 - \circ > 98,000 nurses and 35,000 allied health professionals
- > 40,000 affiliated physicians, including
 - > 6,000 employed physicians and practitioners
 - > 4,000 housestaff
- > 45,000 licensed beds

HCA Healthcare COVID-19 Registry

Data collected from patients who tested positive for COVID-19 at an HCA Healthcare facility since March 1, 2020.

Research Consortium Objectives

Accelerate Understanding of COVID-19 and its Treatment Introduce Novel Technology For Collaborative Research That Protects Privacy 3

Create Platform for New Paradigm of Research Partnership *(Governance)*

Create an Engine to Accelerate Quality and Safety

Founding CHARGE Organizations

Johns Hopkins University

Meharry Medical College

Refining the Data Set

HCA Healthcare Database (all, identifiable)

> HCA Healthcare COVID-19 Registry (COVID+, identifiable)

Limited Data Set (LDS) Clinically irrelevant data and identifiers removed

Potential Models for Ensuring Data Privacy

HCA Healthcare /HCA Research Institute

Partnered Research Institution

Governance

- CHARGE governance established by formal signed memorandum between each partner and HCA Healthcare/HCA Research Institute
- HCA maintains full control of its registry data sets and their use
- MOU establishes a Consortium Steering Committee (CSC)
- Common IRB framework established through HCA
- CSC reviews all study proposals
 - All organizations may provide feedback to improve methodology and relevance.
 - CSC members provide initial rating of enthusiasm for each proposal
 - HCA makes final determination of study approval
- Consortium MOU protects academic freedom for approved studies
- CSC meets regularly and addresses additional issues such as guidance for grant applications using CHARGE infrastructure

Consortium Steering Committee

HCA Operational Support

Consortium Steering Committee

HCA Operational Support

Research Flow

- Research Institution(s) submits research proposal to Consortium
- 2. Experienced HCA Investigator(s) assigned to work with Project Team
- **3.** Proposal submitted to Consortium Steering Committee (CSC) for review
- **4.** CSC provides feedback and approval (confirmed by HCA)
- 5. Project Team develops analytic plan and conducts preliminary analysis using a privacy protected pathway

- 6. If needed, HCA analyst repeats analysis on full LDS and shares outputs
- 7. Team prepares manuscript

8. Internal peer review by CSC prior to submission for publication and prepublication posting

Approved COVID-19 CHARGE Studies

Institution	Title	Study Focus
Johns Hopkins	Comparative effectiveness of therapeutics for hospitalized patients with COVID-19	COVID-19 Clinical Care
BWH & UCSF	Analysis of Clinical Criteria to Determine Stability for Discharge among Patients Hospitalized with COVID-19	COVDI-19 Clinical Care
UMMS Bay State	Trends in ventilation and effects on outcomes	COVID-19 Clinical Care
UCSF	Risk Stratification Scores and Prediction of Clinical Outcomes among COVID-19 Patients	COVID-19 Clinical Care
Duke University	Causal inference machine learning to estimate heterogeneous treatment effects for COVID-19 therapies	Analytic Methodology
Cleveland Clinic	Effect of antibiotic classes on risk of Clostridioides difficile	Other Clinical Care
Meharry Medical College	Developing Phenotype Adjustment Models for COVID-19 Disease Study	Preparatory for Research Grant Application

Concluding Observations

- The pandemic provided motivation to overcome some of the barriers to data sharing
- This effort is possible because the health system was willing to invest substantial funds to make it possible.
 - This also allowed the health system to keep control of their data and its uses
 - Data governance is simplified by HCA maintaining full control
- At this moment, research teams are interested in partnering with health systems (including working without funding)
- This effort has significant potential to advance methodologies for ensuring data privacy in research
- A major potential next step would be if CHARGE can evolve to welcome other health systems to contribute additional data
- Sustainability of this data sharing infrastructure needs to be determined

Potential Models for Ensuring Data Privacy

HCA Healthcare /HCA Research Institute

Partnered Research Institution

National COVID Cohort Collaborative (N3C)

Ken Gersing, MD 04/22/2021

CTSA Plus IDeA States

NCATS Data Ingestion & Harmonization Pipeline

N3	200	meli	ne		500K	1M	2M	2.6M	3.0	V 1.	4.5M 0 M C-
April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar
Kick off	1 st DTA	17 DTAs	43 DTAs 4 DUAs	48 DTAs 29 DUAs	59 DTAs 88 DUAs 30 DURs 12 Sites Avail.	69 DTAs 116 DUAs 67 DURs 25 Sites Avail.	73 DTAs 129 DUAs 103 DURs 34 Sites Avail.	75 DTAs 139 DUAs 140 DURs 38 Sites Avail.	78 DTAs 141 DUAs 181 DURs 39 Sites Avail	80 DTAs 160 DUAs 210 DURs 42 Sites Avail	86 DTAs 186 DUAs 248 DURs 47 Sites Avail
DTA Done	Palantir	DUA	COC Complete	DAC	NIH IRB	Synthetic Avail	201 Objects	1 st IDeA CTR	Phenotype Explorer	N3C Public Dashboard	24th Dom. Teams
IRB JHU	Phenotype	COMe	1 st Manuscript		Support Desk		PPRL Contract	Knowledge Store	Export Results	External Data	40+ (Pre)/ publications
G-Suite	1.0	Mapped	Domain Teams	Training	Harm/QA Comp.			Cohort Paper	Validation Tool Image Linkage		

N3C Enclave Data: Current Stats

(4/09/21)

National COVID Cohort Collaborative

COVID-19 Positive Patier 1,222,29	nts 64	Total Patients 4,960,128		Sites 50			Rows of Data 5.8b	
Projected 3.6	HV	7,20	0,000+		8	6+	8B-	F
Procedures 287.3m	Lab Ro 2 .	esults 6b	Drug Exp 949	oosures .0m	Visit 257.	s 8m	Observations 721.4m	ר ר

1231 participants

	COVID	NON-COVID	OVERALL
	(N = 1,222,296)	(N = 3,737,832)	(N = 4,960,128)
Gender			
Male	551,310	1,656,758	2,208,068
Female	669,672	2,078,740	2,748,412
Unknown		2,325	2,325
Age			
0 - 17	114,360	509,058	623,418
18 - 29	226,827	554,036	780,863
30 - 49	370,783	1,015,853	1,386,636
50 - 64	278,815	818,380	1,097,195
65+	215,511	790,963	1,006,474
Unknown	16,000	49,542	65,542
Race			
White	741,252	2,520,020	3,261,272
Other	10,472	36,422	46,894
Black or African American	185,122	565,573	750,695
Asian	33,339	109,435	142,774
Pacific Islander	2,983	6,633	9,616
Unknown	228,809	450,553	679,362
Ethnicity			
Not Hispanic or Latino	831,135	2,906,243	3,737,378
Hispanic or Latino	211,020	403,031	614,051
Unknown	178,874	423,839	602,713
Unknown	178,874	423,839	602,713

NCATS

COLLABORATE. INNOVATE. ACCELERATE.

National COVID Cohort Collaborative

N3C: Governance and Access

Getting Access to the Data

Returning Users

Data Access Committee

Research !!!

Data Use and Privacy

Goal of the Data Use Agreement is Privacy Protection to Promote broad access:

- COVID-Related research only
- No re-identification of individuals or data source
- No download or capture of raw data
- Open platform to all researchers
- Security: Activities in the N3C Data Enclave are recorded and can be audited
- Disclosure of research results to the N3C Data Enclave for the public good
- Analytics provenance
- Contributor Attribution tracking

First-Day ML Models to **Predict Patient** Severity

Random Forest Top 10 Predictors

- Age
- AST
- BUN
- Cr
- •

- ✓ High confidence.
- Glucose
- pН
- RR
- SBP
- SpO2
- WBC

- ✓ Repeatable.
- ✓ Clinically relevant.
 - ✓ Readily deployable.
 - ✓ Easily refined.

RF Mar-May AUROC: 0.864 RF Jun-Oct AUROC: 0.865

				Logis	tic Regre	ssion
		Random	XG		mere	
	Variable	Forest	Boost	None	L1	L2
	pH	0	0	1	1	1
	Age at visit start (years)	3	4	0	0	0
	Oxygen saturation (SpO2)	2	2	5	4	2
	Systolic blood pressure (SBP)	9	8	4	3	5
	Blood urea nitrogen (BUN)	1	1	11	11	10
	Albumin	21	6	6	5	4
	Lactate	18	9	7	-7	7
	C-reactive protein (CRP)	16	11	8	8	8
	Aspartate aminotransferase (AST)	6	5	12	22	18
	Absolute neutrophil count	45	20 7	9	9	9
	Glucose	5	18	16	15	14
	Platelet count	10	22	14	13	13
	Diastolic blood pressure (DBP)	13	15	21	17	16
	B-type natriuretic peptide (BNP)	32	12	18	14	15
	Sodium	15	27	15	18	17
	Troponin	14	10	30	21	23
E	rythrocyte sedimentation rate (ESR)	36	30	13	12	12
	Sex = male	38	36	10	10	11
	Body weight	19	49	19	16	19
	Charlson Diabates mollitus	37	24	24	20	21
	Creatinine	- 37	46	25	32	24
	D-dimer	25		31	23	20
	Ferritin	20				25
	Bilirubin total		50	29	19	22
	Charlson Dementia		13		28	28
	Temperature		43		26	29
	Potassium	23	53	33		27
	Body mass index	27	41		31	31
	Bilirubin conjugated	34	28	40	35	34
	Charlson Q Score	50	20	40	24	20
	Absolute lymphocyte count	11	14	56	48	51
	Charlson Renal Disease	44	23	39	39	36
	Alamine aminotransferase (ALT)	24	40	23	57	43
	Heart rate		33	51	36	37
	Race = missing or unknown	46	32	17	58	42
	Race = Asian	54	26	55	30	32
	Chloride	22	57	28	60	39
Charlson	Diabetes mellitus with complications	47	19	42	52	47
	White blood cell count	4	1/	62	01	39
C	Hemoglobin - glycosylated (A1C)	33			43	41
	Charlson Congestive heart failure	40	29		53	50
Race :	= Native Hawaiian or Pacific Islander	60	55		33	33
	Race = Black or African-American	43	54	22	59	49
	Charlson Peptic Ulcer Disease	57	59	43	34	35
	Charlson Stroke	49	44	49	42	45
	Procalcitonin	29	21	61	62	57
	Chorleon Liver Disease (with)	35	39	53	50	55
	Charlson Liver Disease (mild)	53	34	52		53
	Ethnicity = not Hispanic or Latino	41	52	27	63	52
	Race = white		60	20	54	62
	Charlson Myocardial Infarction	52	47	50	45	48
	Race = other	61	63	35		46
	Sex = other	63	62	47	40	44
	Charlson Cancer	51	56	54	44	54
	Charlson Pulmonary disease	50	37	59	55	59
	Charlson Rheumatologic disease	55	35	57	56	58
	Charlson Liver Disease (severe)	59	58	63	49	60
	Charison HIV	02	01	00	51	01

 Mean

 0.6

 1.4

 3.2

 3.8

 6.8

 8.4

 9.6

 10.2

 12.8

 13.4

 13.6

 14.4

 16.4

 18.2

 18.4

 19.6

 20.6

 21

50.4

51.2

51.8 52

52.2 57.8

59

Over time, severity has decreased and use patterns of antimicrobials and immunomodulation have shifted

National COVID Cohort Collaborative

Remdesivir

Jul

Systemic steroid

Jul

Severity

Medications

Nov

Nov

Users can view the list of external datasets that have been imported into the Enclave, as well as the datasets requested and their current status in the review process by viewing the External Dataset Registry

https://discovery.biothings.io/dataset?guide=/guide/n3c/dataset

	30 Results	
the	Shapefiles for creating us map vizulisations	Ready for Import
-	Please upload this shapefile to the Palantir platform and let us know where to access the file. The file allows for creating map visualizations. This	
4 terte	Synthea COVID-19 Synthetic Dataset	Done/Rejected
-	This is a synthetic/generated dataset simulating ~100K patient records for use in educational and related contexts. It is described by a paper: https:	
AFT	SafeGraph Shelter in Place Index	Done/Imported
-	SafeGraph data provides unique and valuable insights into these changes, particularly foot-traffic to businesses and consumer points-of-interest. In c	
4	US Census County to State Mappings	Done/Imported
-	Census data that maps county data to states, allowing for more broad and detailed analysis given only county specific data	
4 terte	Area Opportunity Index	Done/Imported
-	The Opportunity Index is an annual report developed by Opportunity Nation, a campaign of the Forum for Youth Investment, and Child Trends. The Index p	
4 terte	Broadstreet Area Deprivation Index	Done/Imported
-	It is a measure that indicates the socioeconomic deprivation that exists in a neighborhood. The ADI is calculated by combining 17 indicators of income	
4	U.S. Census ZIP Code Tabulation Areas	In Review
1.1	ZIP Code Tabulation Areas (ZCTAs) are generalized areal representations of United States Postal Service (USPS) ZIP Code service areas. The USPS ZIP Co	

Shared PPRL on different types of data

Data Contributors

Honest Broker

National COVID Cohort Collaborative

Analytics HPC Step 4: Federated

Abrier	Annual Links					
100.4 ·····	and the			in the		
lettert.	- Topostowa			Balance -		
math.	Date 5 - area	840		Bine b + sets	¢	bet .
Lidwe :	Int inches	- laries) in he		(harphylat)	and the	(tenes) whether (
nete j	All Monthermore	iveer	1-3.0			1991.00.00
max	part sid term	144 1201	080	2004		loof Witness
				1 Manufactoria	-	0.0000
	American					
Parlament -	Enal rem	Set.		Bas		
-	(in intern	Sathers' tel la	ni See Pre-	Beer	August International	1
	M. Harrison		5.4	mpth		
	1011 1010 0-000 0100			-		
a ((00 mm ++++5		- 34			\
	(dd.) hydrosog			1000		(DIM
	with the second	adapti i	and (0.4)			20.222

NIBIB: Imaging Data

HPC Federated Analytics

NHLBI: Omics Data

NCATS: EHR Data

ative

The Honest Data Broker fulfills linkage requests, ensuring privacy & compliance

Multi-model Data EHR and Imaging

Hospital Course

Chest Xray's with serial Lab Correlation of SpO2 and Creatinine

Patient Timeline

Imaging Study Timeline - From TCIA

Patient Labs over Time - From N3C

SP02

Data Sharing Initiative: Synthetic Data

- Gates Foundation
- Microsoft

National COVID

Cohort Collaborative

- MDClone
- Syntegra
- FDA
- NCATS
- Wash U
- U of Washington
- Northwestern

	Trained on real Tested on real	data data		Trained on synthetic data Tested on real data				
alidation of Sepsis Prediction								
	Accuracy	0.925		0.911				
Train	Precision	0.95		0.925				
Irain	Recall	0.817		0.799				
	F-Score	0.879		0.858				
	Accuracy	0.839		0.816				
LO-fold cross-	Precision	0.802		0.754				
validation	Recall	0.704		0.666				
	F-Score	0.745		0.704				
	Accuracy	0.846		0.841				
Taat	Precision	0.836		0.845				
Test	Recall	0.671		0.645				
	F-Score	0.745		0.731				

ML model performance (random forest)

*Wash. U. Philip Payne

Collaboration for a Value & Science-Driven Health System

Nation-wide data governance: Progress and Promise

Micky Tripathi, PhD, MPP National Coordinator for Health Information Technology, ONC

Peter Margolis, MD, PhD

Professor of Pediatrics, Cincinnati Children's Amy Abernethy, MD, PhD Principal Deputy Commissioner, U.S. Food and Drugs Administration

Collaboration for a Value & Science-Driven Health System

Micky Tripathi, PhD, MPP

National Coordinator for Health Information Technology, ONC

Data Governance in a National Pediatric Learning Health Network

Peter Margolis, MD, PhD April 22, 2021

A scenario.....

ImproveCareNow Network Mission

Transform the health, care and costs for all children and adolescents with Crohn's disease and ulcerative colitis by building a sustainable collaborative chronic care network that enables patients, families, clinicians and researchers to work together in a Learning Health System to accelerate innovation, discovery and the application of new knowledge.

Network Organizing

- 1. Unrelenting focus on outcomes exceptional, equitable health and well being
- 2. Engage all stakeholders in co-design and unleash inherent motivation, insight and expertise
- 3. Shared platform/infrastructure of technology, policies, and processes
- 4. Rapid learning system

Share Data to Build Will and Common Purpose

Percent of Patients in Clinical Remission: 2013 - 2021

11,000 additional children in remission in past 7 years

Co-Design of Resources

IMPROVE**CARE**NOW[™]

bout + Get Involved + Tools Patients & Families + Healthcare Professionals + Research + Members Donate

Tools

In the ImproveCareNow Network, there is a saying "to share seamlessly and steal shamelessly". It is understood that when clinicians, researchers, patients and families work collaboratively - sharing what has been learned and developed - improvements in care and health for kids living with IBD can be accelerated. The resources shared on our site demonstrate a commitment to share what has been learned and developed by parents and patients so that others living with IBD can enjoy the benefit of this collective wisdom and experience.

This information does not constitute medical advice and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. The <u>full</u> disclaimer applies to the tools and documents posted on this page.

Learning Health Systems

EXPERIENCE REPORT 🛛 🖸 Open Access 🛛 😨 🚯

Sustainable generation of patient-led resources in a learning health system

Jennie David 🔀, Catalina Berenblum Tobi, Samantha Kennedy, Alexander Jofriet, Madeleine Huwe, Rosa Kelekian, Melissa Neihart, Michelle Spotts, Michael Seid, Peter Margolis ... See all authors 🗸

First published: 12 February 2021 | https://doi.org/10.1002/lrh2.10260

Funding information: National Institute of Diabetes and Digestive and Kidney Diseases; Patient-Centered Outcomes Research Institute

https://onlinelibrary.wiley.com/doi/full/10.1002/lrh2.10260

Network infrastructure fuels a portfolio of activities

Technology Infrastructure

- Direct upload of 70% of data from EHR
- Real-time comparative performance data
- Community knowledge sharing hub

Continuous Improvement Pathway

- Registry implementation and QI training
- Chronic care management to achieve clinical remission
- Advanced chronic care management to achieve sustained remission

Innovation communities ("Trailblazers")

- Therapeutic Drug Monitoring
- Auto-immune Liver Disease
- Adherence
- COVID Response
- Clinical Research Optimization
- Health Disparities
- Payment models
- Engagement Campaign

Research

- 30 investigator initiated projects
- Network-wide Federal, Foundation and Industry-sponsored observational and intervention research

Community Values

Inclusivity Honesty Transparency Community Empowerment Learning **Continuous Improvement** community 💙 values

improvecarenow.org

Data Sharing in Learning Health Networks Should be Easy

Communities of Practice

Values of Open Science

Trust

What could accelerate progress?

Decision Support Tools

Network Facts

Values

Standards

Risks

Certification Framework

Impact Assessment: Digital Health and COVID-19

Amy Abernethy, Peter Lee, David Shaywitz Murali Doraiswamy, Adi Gundlapalli, Subha Madhavan, Kevin Shulman, Jim Weinstein

Health Data: Water, Water, Everywhere...

• Data without architecture leads to data silos

One is reminded of the poem, *The Rime of the Ancient Mariner*, which contains the verse, "Water, water, everywhere, nor any drop to drink." Despite nearly complete digitization, and so many tools at our disposal for data analysis, machine learning, AI, and visualization, the health care community remained thirsting for the high-quality, actionable data upon which these technologies, patients, and caregivers foundationally depended, including data not only from health systems, but from all other relevant sources -- personal, social, infrastructural, biological, population-wide, and more. Thus, the tremendous advances in computer science that today powers global supply chains, massive retail markets, internet search, social media, and more, remained and still remains a stark contrast to the ongoing creation of yet more inaccessible data silos in health care. The ongoing challenges encountered in vaccine distribution and monitoring are only the most current and urgent example of the existing limitations of data visibility, fluidity, transparency, and access.

Digital Health Priority Actions and Actors

• Data architecture, modularity, and data infrastructure

Imagine for a moment that we are setting out to build a house. We would, of course, need good tools and an adequate supply of lumber. And we would need to understand the architecture of the house we are trying to build. But if we lacked the skilled tradespeople, heavy equipment, building inspectors, and other infrastructure that support the process of construction, it would be impossible to connect the tools and lumber to the architecture and realize a completed house. Furthermore, without modularity that is both intentionally designed and agreed upon, for example in industry standards and building codes, orchestrating the construction of components such as electrical systems, plumbing, roofing, heating, doors and windows, appliances and more, would be wildly complex and unwieldy. Even more important, innovators who make technological advances in those component systems would find it hard to survive in the marketplace, because they would not have standard places to "plug in" their new ideas at industrial scale. Instead, home construction would be a low-productivity, artisanal activity, much like, say, early automobile production – or today's health care data ecosystem.

Data Architecture+ New Solutions are Needed

- Data architecture, modularity, and data infrastructure
- Challenge is on the scale of some of the largest public challenges ever addressed, especially in public health and health care
- Similar to the need for an interstate highway system, a common financial system, or our modern flight control system
 - All of these efforts were well-served by public-private partnerships
 - Fostered ingenuity and innovation, and greatly expanded economic activity for the country at large
 - All were federal investments
 - The Federal Reserve provides a practical architecture into which innovators and the banking industry have been able to "plug in"
 - Infrastructure = secure data architecture, parsimonious common data standards, business incentives, and regulatory enforcement

Data Architecture+ New Solutions are Needed

- Hard things are hard and worth doing
- There are real reasons to believe that meaningful progress can and will be made
 - Much of the raw material is already at hand:
 - Rapid digitization of health care (98% of clinical health records are digital)
 - Rapid advances in enabling digital technologies outside of health care
 - Recognized need to align around basic governing rules and an approach to modularity so that consistent components can "plug in," work efficiently, and bring unique elements to the overall design
- A modular approach fosters competition around components, enabling improved quality, reduced costs, and the ability to connect and optimize relevant modules to address distinct challenges in different domains

Data Architecture+ New Solutions are Needed

- What do we need to do?
 - Data governance
 - Focus on public trust
 - APIs and interconnections
 - Right-sized data standards
 - Driver projects & programs
 - PPPs to define and advance business incentives
 - Bring all actors to the table
 - Talent development

Digital Health Priority Actions and Actors

- Data architecture, modularity, and data infrastructure proposed Office of Health and Health Care Digital Integration (OHDI)
 - Government's role in advancing such a modular architecture includes several elements, including:
 - Fostering the regulatory conditions for innovation and establishing the relevant ground rules, while avoiding excessive specification of what the "right" solutions should be
 - Ensuring a commitment to public trust, equity, and health
 - Facilitating vital private-public partnerships
 - Embracing incremental innovation, recognizing that solutions will emerge gradually

Digital Health

Collaborative Initiatives Within and Across Sectors

- Data architecture, modularity, and data infrastructure proposed Office of Health and Health Care Digital Integration (OHDI)
 - Many of the identified priority actions are dependent on this step
 - Incentivize novel clinical evidence generation approaches
 - Harness AI and other capabilities dependent on a coherent data infrastructure
 - Get individuals the healthcare they need (e.g., reduce bias in AI, match treatments to patients, generalizable clinical research)
 - Realize the potential of a learning health system
- Advancing telehealth by right-sizing healthcare regulation
 - Example actor = Office of Civil Rights
- Business solutions are needed
 - Example actor = public private partnerships
- Cybersecurity
- Digital health training

Open Discussion

Closing Remarks

Thank you for joining!

For more information about the National Academy of Medicine's initiatives, please visit us at: **nam.edu**

Collaboration for a Value & Science-Driven Health System

Digital Health and Evidence Mobilization Action Collaboratives

For more information about the

Digital Health and Evidence Mobilization Action Collaboratives

or to share opportunities to address and advance this work, please contact:

Noor Ahmed National Academy of Medicine <u>MAhmed@nas.edu</u>

NATIONAL ACADEMY OF MEDICINE