Inherited Cancer Genomics and Prevention:

How much cancer risk is inherited? Clinical utility of germline genetic testing in precision prevention and targeted therapy

Kenneth Offit MD MPH

Chief, Clinical Genetics Service
Robert and Kate Niehaus Chair in Inherited Cancer Genomics
Memorial Sloan Kettering Cancer Center

Professor of Medicine and Health Care Policy & Research
Weil Cornell Medical College, Cornell University

No conflicts to declare
The Heritability of Human Cancers As Measured By Unique Resources: the Scandinavian Twin Registry

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Heritable Fraction*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>203,691 twin pairs</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.22 (0-55)</td>
</tr>
<tr>
<td>Colon</td>
<td>0.15 (0-0.45)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>-</td>
</tr>
<tr>
<td>Lung</td>
<td>0.18 (0-0.42)</td>
</tr>
<tr>
<td>Breast</td>
<td>0.31 (0.11-0.51)</td>
</tr>
<tr>
<td>Cervix</td>
<td>-</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.27 (0.11-0.43)</td>
</tr>
<tr>
<td>Ovary</td>
<td>0.39 (0.23-0.55)</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.57 (0.51-0.53)</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.30 (0-67)</td>
</tr>
<tr>
<td>Leukemia</td>
<td>0.57 (0-100)</td>
</tr>
</tbody>
</table>

*Heritable Fraction= proportion of cancers due to hereditary causes comparing monozygous and dizygous twins
Cancer Susceptibility Alleles 2018

- **BRCA1**
- **BRCA2**
- **MLH1**
- **MSH2**
- **CDH1**
- **CYP1A1**
- **CHEK2**
- **PALB2**
- **APC (I1307K)**
- **ATM**
- **CDKN2A**
- **JAK2**
- **STK11**
- **BLM (BLM^sh)**
- **BRIP1**
- **GSTM1**
- **KITLG**

Population Frequency

- **High Penetrance, Rare Cancer Predisposition Genes (Relative risk ≥ 5)**
 - **Very Rare (0.1%)**
 - **Common (40%)**

- **Low Penetrance, Common Risk Alleles* Single Nucleotide Polymorphisms (SNPs) (Relative risk < 1.5)**
 - Breast Cancer: 185 SNPs
 - Colon Cancer: 45+SNPs
 - Prostate Cancer: 170 SNPs
 - CLL: 41 SNPs

Phenotypic Effect Size

- **High-penetrance**
- **Low-penetrance**

Low Penetrance, Common Risk Alleles
Example of clinical Actionability:

Management of an Inherited Predisposition to Breast Cancer

Mark Robson, M.D., and Kenneth Offit, M.D., M.P.H.

Positive BRCA1 or BRCA2 test result

Identify at-risk adult relatives; offer genetic counseling/testing

Surgery

Increased surveillance

Chemo-prevention

Treatment PARP inhib

Mortality 70% (*)
Some Interventions for Hereditary Cancers Now Standard Of Care

<table>
<thead>
<tr>
<th>Tumor site (gene)</th>
<th>Intervention (surgery; drug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIST tumor (KIT)</td>
<td>imatinib</td>
</tr>
<tr>
<td>Thyroid (RET)</td>
<td>Thyroidectomy; vandetanib and cabozantinib</td>
</tr>
<tr>
<td>Colon (APC)</td>
<td>Colectomy (COX2 investigational)</td>
</tr>
<tr>
<td>Stomach (CDH1)</td>
<td>Gastrectomy</td>
</tr>
<tr>
<td>Kidney (STK11, VHL)</td>
<td>Screening; everolimus (mTOR)</td>
</tr>
<tr>
<td>Basal Cell (PTCH)</td>
<td>Screening vismodegib (Hedgehog)</td>
</tr>
<tr>
<td>Colon (MSH2)</td>
<td>Screening, Colectomy (PD-1 blockade, ASA)</td>
</tr>
<tr>
<td>Breast/Ovary (BRCA1/2)</td>
<td>Screening, Mastectomy, Hysterectomy (PARPi)</td>
</tr>
</tbody>
</table>
Targeting Prevention and Therapy in Lynch Syndrome

Lynch Syndrome

- CRC dx 45
- CRC dx 50s
- CRC dx 61
- CRC dx 75
- Ovarian Ca, dx 64
- CRC dx 42
- CRC dx 48
- CRC dx 52
- Endometrial Ca, dx 59
- 45
- CRC dx 42

Colonoscopy Start age 25

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

Stadler et al in press JCO

Distribution of MSI scores across tumor types

FDA News Release

FDA approves first cancer treatment for any solid tumor with a specific genetic feature

For Immediate Release: May 23, 2017

20% increase (progressive disease)

20% decrease (partial response)
Clinical actionability in newly discovered cancer susceptibility: reproductive and therapeutic aspects
SCREENING advanced cancer patients: 17.5% Actionable Germline Mutations

- 17.5% of patients have a clinically actionable mutation conferring cancer susceptibility
- 30-55% of these would not have been detected by clinical guidelines-directed testing, depending on case mix, ancestry and stage
- Results cascade to family

Mandelker et al., JAMA 2017;318(9):825-835; Lowery et al., JNCI, 2018 doi: 10.1093/jnci/djy024; Carlo et al., JAMA Oncol 2018 Sep 1;4(9):1228-1235
SCREENING at-risk populations: the BRCA Founder OutReach Study (BFOR):

- 3.5 M Ashkenazi Jews in U.S. >age 25 in U.S
- 90% not tested
- Pilot studies of AJ in London, Israel, Toronto
- Provide as medical test and involve MDs
- Pilot study 4,000 in NY, Phil, Boston, LA; half done
- Internet based, digital health platform: academic-commercial partnership; BFORstudy.com

Beth Karlan, Cedars Sinai; Judy Garber, DFCI; Nadine Tung, Beth Israel; Susan Domchek and Kate Nathanson, U.Penn, Ken Offit and Mark Robson, MSKCC
Direct to consumer genomics

• Is inherited cancer genomics like recreational genomics, or like recreational drug use?

• Empowerment vs exploitation?
 • Increasing access vs. commercial profiteering?

• De-medicalization and risk
 • false results
 • false reassurance
 • uncertain variants (“VUS”)
 • privacy

• Important role of federal government
 • NCI, NHGRI: ClinVar, ClinGEN
 • FDA

• Role of professional societies

• Role of the academy

Inherited Cancer Genomics and Prevention

- The burden of hereditary cancer is larger than initially thought, and depends on type, stage, and ancestry

- Hereditary cancers offer the opportunity for precision prevention as well as targeted therapy

- As such, testing for hereditary cancer is a medical and not a recreational endeavor

“As if we didn’t already know too much about ourselves, we’re having our DNA done.”