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Model Explainability 

• Machine learning methods  
– Lauded for achieving higher accuracy than 

traditional statistical methods 
– Criticized for being ‘black boxes’ that are not 

explainable or interpretable 
 

• One of the key limitations in scale and spread 
of ML methods has been in areas where 
transparency and explainability are needed 



Rise of Demand for Explainability 

• Pivotal Moment:  European Union passing 
General Data Protection Regulations that 
specifically cover requirements for 
transparency in automated modeling set to be 
law in 2018 
 

• DARPA Explainable Artificial Intelligence 
(2016) RFA/Announcement 

Goodman, et al.   arXiv:1606.08813 
https://www.darpa.mil/program/explainable-artificial-intelligence 



Explainable to Whom?  How?  For What? 

• What is explainability, really? 
 

• Whole notion of allowing data science to 
determine interactions and relationships in the 
data that are not discernable to humans is core to 
the discipline 
 

• Not all models have to be interpretable to 
achieve the desired effect 
 

• Complex ‘traditional statistical’ models are not 
necessarily easily explainable 
 
 



Explainability 

• Who needs the explanation, and for what: 
– Medical Professional 

• needs to know what is modifiable in the clinical context 
• Needs to know likely impact of using the data - change in outcome(s) 

– Patient 
• needs to trust that the model is not discriminatory (race, SES, gender, 

sexual orientation, sensitive clinical conditions, etc) 
• Needs to be able to which of their characteristics were important in the 

modeling and resulting care decisions 

– Medical Societies 
• Needs to know that care supported by modeling is consistent with best 

practice guidelines and care recommendations 

 
 
 



Active Areas of Research 

• Methods for visualizing model outputs in a 
way that are clinically interpretable 
 

• Use of simpler models on top of ML to provide 
interpretation 
 

• explaining individual prediction versus overall 
model (parameters, etc) 



Overall Model Performance 

• How much accuracy is needed for clinical 
implementation? 
 

• Application & Context Dependent 
– Population Health Care Management 
– Point of Care Management 

 
• Knowing when it is sufficient to use a model to 

separate a ‘yes’ from a ‘no’ (discrimination) and 
when do you need a range of probabilistic 
predictions (calibration) 

 



Challenges in Re-Use (Spread) of Models 

• Immediately, external application of models face: 
– Variation in underlying data collection 
– Variation in implementation of features 
– EHR Implementation: Real-Time Data changes (‘dirty 

production data’) 
 

• Performance Over Time:  
– Changes in clinical practice 
– Changes patient case mix and outcome rates 
– Changes in data collection practices 

 



Acute Kidney Injury 30-Day Mortality 

Discrimination Over Time 

Davis SE, et al, Matheny ME.  J. Am. Med. Inform. Assoc. 2017 Nov;24:1052-1061. 
Davis SE, et al, Matheny ME.  AMIA Annu Symp 2017 



Acute Kidney Injury 30-Day Mortality 

Calibration Over Time: Estimated Calibration Index 
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