

INTRODUCTION TO MACHINE LEARNING FOR MEDICINE

Carla E. Brodley Professor & Dean College of Computer and Information Science Northeastern University

Northeastern University College of Computer and Information Science

440 Huntington Avenue 202 West Village H Boston, MA 02115 T 617.373.2462 Ccis.northeastern.edu

WHAT IS MACHINE LEARNING/DATA MINING?

Figure is from Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy. Advances in Knowledge Discovery and Data Mining, 1996; image found at: www2.cs.uregina.ca/~dbd/cs831/notes/kdd/kdd.gif

SUPERVISED LEARNING

Given: example $- \langle x_1, x_2, ..., x_n, f(x_1, x_2, ..., x_n) \rangle$ for some unknown function f**Find:** A good approximation to f**Goal:** Apply f to previously unseen data

Example Applications:

- **Regression:** *f* is a continuous variable (e.g., predicting EDSS for MS patients)
- Classification: f is a discrete variable (e.g., predicting whether a patient has unilateral or bilateral Meniere's)

CLASSIFICATION EXAMPLE: CITATION SCREENING FOR SYSTEMATIC REVIEWS

- Systematic review: an exhaustive assessment of all the published medical evidence regarding a precise clinical question
 - e.g., "Is aspirin better than leeches in inducing more than 50% relief in patients with tension headaches?"
- Must find all relevant studies

TYPICAL WORKFLOW

CITATION SCREENING

Doctors read these. They'd rather be doing something else.

GENERATING TRAINING DATA FOR SUPERVISED LEARNING

Induce (train) a classifier C over

 \mathcal{L} unlabeled pool \mathcal{U} - \mathcal{L}

Apply C to unlabeled examples

A DETOUR INTO TEXT ENCODING

- Classification algorithms operate on vectors
- Feature space: an n-dimensional representation
- A 'bag-of-words' example:
 - S_1 = "Boston drivers are frequently aggressive"
 - S₂= "The Boston Red Sox frequently hit line drives"

TEXT ENCODING: STOP WORDS

 S_1 = "Boston drivers are frequently aggressive" S_2 = "The Boston Red Sox frequently hit line drives"

TEXT ENCODING: LOWERCASING

 S_1 = "boston drivers are frequently aggressive" S_2 = "The boston red sox frequently hit line drives"

TEXT ENCODING: STEMMING

 S_1 = "boston drive are frequent aggressive" S_2 = "The boston red sox frequent hit line drive"

TEXT ENCODING: VOILA

	hit	red	SOX	line	boston	frequent	drive	aggressive
$S_1 =$	0	0	0	0	1	1	1	1
$S_2 =$	1	1	1	1	1	1	1	0

A new sentence, S_3 , comes along:

"I hate the red sox."

Which sentence is it most similar to?

SUPPORT VECTOR MACHINES: A HAND-WAVING EXPLANATION

SUPPORT VECTOR MACHINES: THE NON-LINEARLY SEPARABLE CASE

SUPERVISED LEARNING

Induce (train) a classifier C over

 \mathcal{L} unlabeled pool \mathcal{U} - \mathcal{L}

Apply C to unlabeled examples

SUPERVISED LEARNING

What if we are clever in what examples we label?

 \mathcal{L}

Induce (train) a classifier C over

Apply C to unlabeled examples

ACTIVE LEARNING

- Key idea: have the expert label examples most likely to be helpful in inducing a classifier
- Need fewer labels for good classification performance = less time/work/money
- Need a scoring function $f: x \rightarrow$ expected value of labeling x
- Most popular strategy: *uncertainty sampling*

UNCERTAINTY SAMPLING (W/ SVMS)

Which examples should we label next?

UNCERTAINTY SAMPLING (W/ SVMS)

Uncertainty sampling: label the examples nearest the separating plane

UNCERTAINTY SAMPLING (W/ SVMS)

WHY 'OFF-THE-SHELF' AL DOESN'T WORK FOR CITATION SCREENING

Imbalanced data; 'relevant' class is very small (~5%), but sensitivity to this class is paramount

WHY MIGHT UNCERTAINTY SAMPLING FAIL?

Hasty generalization: uncertainty sampling may miss clusters

- Pre-clustering doesn't help
 - unreliable in high-dimensions
 - small clusters of interest

GUIDING AL WITH DOMAIN KNOWLEDGE

Labeled terms: terms or *n*-grams whose presence is indicative of class membership

tension headache, leeches, aspirin

migraine headache, mice

"Is aspirin better than leeches in inducing more than 50% relief in patients with tension headaches?"

CO-TESTING FRAMEWORK (MUSLEA ET AL., 2000)

If model 1 disagrees with model 2 about x, then x is a good point to label

LABELED TERMS + CO-TESTING

Model 1: Standard BOW (linear kernel) SVMModel 2: Ratio of #pos terms to #neg terms

Query strategy:

- Find all documents about which the models disagree
- Select for labeling items of maximum disagreement

COPD: GENETIC ASSOCIATIONS WITH COPD

MOST IMPORTANT REQUIREMENT FOR MACHINE LEARNING TO WORK: THE DATA

- Are the features predictive of the class?
- How noisy is the data? (attribute noise vs. class noise)
- Do you have enough (labeled) data?
- Are the training samples representative?

TRANSFER LEARNING

- A machine learning technique to improve performance leveraging on related knowledge
- A primary task on dataset T
- An auxiliary dataset T_{aux}
- T and T_{aux} are usually related and have similar distributions

TRANSFER LEARNING EXAMPLES

- Predicting readmission to hospitals
 - Use data from other hospitals to predict for your hospital
- Predicting MS progression
 - Combining data from multiple physicians

CLUSTERING

- Given a set of data points, each described by a set of attributes, find clusters such that:
 - Inter-cluster similarity is maximized
 - Intra-cluster similarity is minimized
- Requires the definition of a similarity measure

EXAMPLE: CONSTRAINED K-MEANS

EXAMPLE: CONSTRAINED K-MEANS

EXAMPLE: CONSTRAINED K-MEANS

CHALLENGES IN CLUSTERING MEDICAL DATA

- Confounding factor:
 - One or a set of features whose effect will lead to undesirable clustering solution if not removed
- Clustering clinical data:
 - Physician subjectivity
 - Age for neurological test scoring in MS

EXAMPLE: VESTIBULAR DISORDERS

CLUSTERING WITH K = 2

Balance Function

PROPOSED SOLUTION

- Remove the impact of confounding factor F via constraint-based clustering:
 - 1. Bin the data into homogeneous groups w.r.t. *F*
 - 2. Apply clustering to each group and generate pair-wise instance constraints
 - 3. Apply constraint-based clustering to entire data

STEP 1: BINNING (STRATIFICATION)

- Categorical F:
 - Create one bin per category
 - Example: one bin per physician for MS data
- Numeric F:
 - Create bins of:
 - Uniform ranges or uniform bin sizes
 - Domain knowledge
 - More sophisticated binning methods, such as nonparametric density estimation, etc

STEP 1: BINNING

STEP 2: CLUSTER IN EACH BIN AND GENERATE CONSTRAINTS

- In each bin:
 - Apply clustering (e.g., EM over a mixture of Gaussians)
 - Number of clusters can be specified by domain knowledge or inferred using criteria such as BIC
 - Generate "must-not-link" constraints for pairs of instances in different clusters

STEP 2: CLUSTER EACH BIN

STEP 2: GENERATE CONSTRAINTS

STEP 3: APPLY CONSTRAINT BASED CLUSTERING TO THE ENTIRE DATA

ANOMALY DETECTION

- Given a set of data points, each described by a set of attributes, points that are far away from most of the other points – also called outliers
- Requires the definition of a similarity measure

TYPES OF ANOMALY DETECTION

- Supervised
 - Labelled normal and anomalous data
 - Similar to rare (minority) class mining
- Semi-supervised
 - Labels available only for normal data
- Unsupervised
 - No labelled data
 - Assumption: anomalies are rare compared to normal data

COMPLEXITIES OF ANOMALY DETECTION

- Where does the "normal" data come from?
- Feature selection
- Metric
- Different parts of the space may have different densities

COMPLEXITIES OF ANOMALY DETECTION

• Which of P1, P2 and P3 are anomalies?

ANOMALY DETECTION EXAMPLE: DETECTING CORTICAL LESIONS

• 50 million affected by epilepsy worldwide

- One-third remain refractory to treatment
- One of the most common causes of TRE: Focal Cortical Dysplasia (FCD)

• Treatment:

Surgical resection of the abnormal cortical tissue (aka lesion)

- 70-80% of histologically verified FCD cases have normal MRI
- Chances of being seizure free after surgery:
 - MRI-Positive: 66%
 MRI-Negative: 29%

MACHINE LEARNING CHALLENGES

- Input data
 - Surfaces of FCD patients (MRI)
 - Resected tissue (MRI-Negatives): histopathologically verified
 - Generous margins to ensure complete lesion removal
 - Exact location of the lesion is unknown
- Labels
 - Resection zones for MRI-negatives
 - Lesion tracings by neuroradiologists for MRI-positives
 - False positives in training data
 - *False negatives in training data from long untreated epilepsy, trauma, etc.*

PROPOSED SOLUTION

- Hierarchical Conditional Random Fields for Outlier Detection
 - Discard pixel-level labels and use only image-level labels
 - Redefine FCD lesion as: a cortical region which is an outlier when compared to the same region across a population of normal controls

RESULTS

- Tested on fifteen MRI-negative patients with successful surgery
- High detection rate (80%) for MRInegative patients with higher average recall and precision

MY LAST WORDS...

There are many, many different learning algorithms, but the key to success is in having the right training data.

MLHC is a great conference....