National Evaluation System for health Technology (NEST)
Vision
A real-world data powered national evaluation system to generate better evidence more efficiently for use throughout the medical device total product lifecycle.

Mission
Establish and operate the decentralized, federated NESTcc based on the foundational principles of trust, transparency, scalability, sustainability and accountability serving device manufacturers, payers, regulatory agencies, patient groups, physicians, providers and other relevant stakeholders.
MDIC NEST Coordinating Center

MDIC’s vision is to establish and operate the decentralized, federated NESTcc based on the foundational principles of trust, transparency, scalability, sustainability and accountability serving stakeholders throughout the medical device ecosystem.

Objectives for the NESTcc

1. Broad stakeholder engagement including public input
2. Establishment of CC independence from bias from any single stakeholder’s interests
3. Decentralized data flow and evaluation systems rather than a single centralized device evaluation program
4. Common data analytical and report “standards” rather than a "standardization" of mandatory set of data fields and reports
5. Open science principles of transparency of governance, coordinating processes and policies, and data access
6. Active oversight of the critical data flow and key operation components employing audit, certification and performance reporting to ensure compliance with standards and reporting recommendations

These NESTcc objectives build on NEST planning board report* developed by the Duke-Margolis Center for Health Policy

MDIC’s goal is to establish and operate the decentralized, federated NESTcc based on the foundational principles of trust, transparency, scalability, sustainability and accountability serving stakeholders throughout the medical device ecosystem

Objectives for the NESTcc

1. Broad stakeholder engagement including public input
2. Establishment of CC independence from bias from any single stakeholder’s interests
3. Decentralized data flow and evaluation systems rather than a single centralized device evaluation program
4. Common data analytical and report “standards” rather than a “standardization” of mandatory set of data fields and reports
5. Open science principles of transparency of governance, coordinating processes and policies, and data access
6. Active oversight of the critical data flow and key operation components employing audit, certification and performance reporting to ensure compliance with standards and reporting recommendations

These NESTcc objectives build on NEST planning board report* developed by the Duke-Margolis Center for Health Policy

In September 2016 FDA awarded a $3M grant for the NESTcc to the Medical Device Innovation Consortium (MDIC) with an expected $6M per year for five years from MUDFA

Aims from the MDIC proposal:

1. **Establish a governance** committee of the key stakeholders charged with inaugurating the NEST CC that is inclusive, patient-focused, and anchored in equity and transparency.

2. **Establish scope, strategy** (decentralization, stakeholder engagement, independence from bias, open science and data sharing, objective prioritization), **structure** (primary data processes and secondary data and results dissemination), **standards** (data, methods, reporting, and data access, audit and certification), in a **decentralized and federated NEST**.

3. **Guarantee** an inclusive pathway for competitive **innovation** and continual modernization through decentralized data warehousing and integration.

4. **Conduct pilot projects** to develop, verify and operationalize methods of evidence generation and data use, demonstrate scalability across healthcare systems and device types and manufacturers, and prove out principles of NEST sustainability.
What is MDIC?

MDIC is a 501(c)(3) non-profit organization and is the first-ever public-private partnership created with the sole objective of advancing regulatory science of medical devices for patient benefit.

Our Mission: Faster, Safer and more Cost-effective innovation for Patient Benefit

MDIC HIGHLIGHTS

- 59 participating member organizations
- Leading resource on issues important to the Medtech innovation ecosystem
- 6 Projects have been initiated
- Congressional testimony on modernizing clinical trials
- Over $4.4m funding from grants and contracts for Program initiatives.
NESTcc Structure
Fits within the MDIC governance model

[Diagram showing the structure of NESTcc with a Board of Directors, CEO, Projects, and CC (coordinating center).]
The NEST Coordinating Center (NESTcc) will be stood up through parallel activities

NESTcc Stand-up Strategy

1. Phase 1
 - Conduct **Landscape Analysis**
 - Hire **Executive Director** - Complete
 - Establish NESTcc **Governing Committee** with representation from patients, federal agencies, industry, clinicians, hospitals, and health plans

2. Phase 2
 - Initiate focused **demonstration projects** centered on high-risk category devices that require tracking and EHR data from hospital systems that use modern means of data collection

3. Phase 3
 - Demonstration projects will **establish sustainability** of the NESTcc to the broader medical technology ecosystem

MDIC has received letters of support from strategic patient and industry partners indicating commitment to developing demonstration projects
MDUFA Milestone Suggested Roadmap

- Governing Committee Selected
- Executive Director Appointed
- Working Groups Established
- Landscaping Analysis/RWE Catalog
- Pilot Selection (Funding Framework & Criteria)
- Phase 1 Pilot Projects - PMA & 510(k)
- Phase 2 Pilot Projects
- Report Synthesizing Pilot Findings
- Coordinating Center Public Meeting
- Demonstrating Proof of Concept
- Communications Platform

Fiscal Year (FY): 1 Oct – 30 Sept

FY17
- Oct 16: Governing Committee Selected
- Apr 17: Executive Director Appointed
- Oct 17: Working Groups Established
- Oct 1: FY2020 Report Synthesizing Pilot Findings Finalized

FY18
- Oct 17: Landscaping Analysis/RWE Catalog
- Apr 18: Pilot Selection (Funding Framework & Criteria) Workshop & Criteria Disseminated
- First Group of Pilots Selected
- Oct 18: Phase 1 Pilot Projects (PMA & 510(k))
- Oct 18: Metrics Collected
- Apr 19: Measurable Outcomes from Phase 1 Pilots Reported
- Oct 19: Phase 2 Pilot Projects
- Apr 20: Metrics Collected
- Oct 20: Measurable Outcomes from Phase 2 Pilots Reported

FY19
- Oct 18: Report Synthesizing Pilot Findings
- Apr 19: Measurable Outcomes from Phase 1 Pilots Reported
- Oct 19: Phase 2 Pilot Projects
- Apr 20: Metrics Collected
- Oct 20: Measurable Outcomes from Phase 2 Pilots Reported

FY20
- Oct 19: Final Report with Pilot Findings
- Apr 20: Metrics Collected
- Oct 20: Measurable Outcomes from Phase 2 Pilots Reported

FY21
- Oct 20: End of Year 5

Accommodates Differences in Project Tenure and Complexity

Short and Long-Term Vision

NOTIONAL: 5 YEAR VISION

- The Coordinating Center Serves as the Center for the Medical Device Ecosystem
- Value of RWE in Health Care Decision-Making is Clearly Defined
- Standards/Methods are Developed Collaboratively and Integrated in FDA/NEST Guidance
- All Pilots Are Implemented; New Pilots Are Explored
- Best Practices are Integrated in Educational, Industry, and Community Efforts
- NEST is Financially Sustainable with a Business Model that Supports Long-Term Growth For Medical Device Development, Assessment, Review and Patient Safety

WHAT DOES SUCCESS LOOK LIKE IN YEAR 1?

- Executive Director Hired
- Governing Committee Established
- Value-Proposition and Sustainability Plans Are Created
- High-Priority Working Groups Are Established and Aligned with Pilot Project Topics/Needs
- First Round of Pilots Are Implemented with Clearly Defined Future Value Goals
- Requirements for the Communication Platform are Drafted
In an ideal state, a more robust post-market surveillance system would facilitate the feedback of RWD collected to both the pre-market and post-market phases of product development.
Uses of Real-World Data

<table>
<thead>
<tr>
<th>Uses of RWD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Effectiveness</td>
<td>RWD can be used to compare the performance, safety profile, and effectiveness of one medical product with another by examining patient outcome data.</td>
</tr>
<tr>
<td>Cost-benefits</td>
<td>RWE can help stakeholders to identify devices that can help reduce costs or increase cost-savings through reduced hospitalization time, better clinical outcomes, or fewer adverse events.</td>
</tr>
<tr>
<td>Expanded Indications for Use</td>
<td>RWE can be analyzed to determine the safety and effectiveness of off-label use. This evidence of off-label use of a product can support a submission for an expanded indication of use.</td>
</tr>
<tr>
<td>Generalize or Confirm Findings from Randomized Clinical Trials (RCTs)</td>
<td>RWE can help corroborate generalizability of findings discovered through clinical trials in real-world populations. The use of RWE can help to understand any differences seen in outcomes or performance across study and real-world populations.</td>
</tr>
<tr>
<td>Improved Clinical Care Guideline</td>
<td>RWE may support better clinical guidelines as more information on the effectiveness of products in various patient populations is shared with providers.</td>
</tr>
<tr>
<td>Patient Outcomes</td>
<td>RWE can help demonstrate nuances in device performance across specific patient populations to help patients and clinicians make more informed health care decisions.</td>
</tr>
<tr>
<td>Product Safety and Performance</td>
<td>RWD from post-approval data collected through routine care or specific registries can identify trends in patient outcomes or higher risks of adverse events.</td>
</tr>
</tbody>
</table>
Sources of Real-World Data

<table>
<thead>
<tr>
<th>Sources and Types of RWD</th>
<th>Industry</th>
<th>Institutions</th>
<th>Public Sources</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medical Device-Produced Data</td>
<td>Hospital Administrative Data</td>
<td>Social Security, DEATH Index, Census, Socio Economic Data</td>
<td>Patient Reported Outcomes</td>
</tr>
<tr>
<td></td>
<td>Patient Data Tracking</td>
<td>Clinical Data from Electronic Health Records</td>
<td>Claims Data (CMS and Private Payers)</td>
<td>Wearable Devices</td>
</tr>
<tr>
<td></td>
<td>Industry Sponsored Studies and Registries</td>
<td>Hospital Billing Data</td>
<td>Public Registries (e.g. NCDR)</td>
<td>Disease Risk Assessments</td>
</tr>
<tr>
<td></td>
<td>Adverse Event Reporting (e.g. MDR Reporting)</td>
<td>Logistics Supply Chain Data</td>
<td>Safety and Effectiveness Monitoring</td>
<td>Patient Requested Data</td>
</tr>
</tbody>
</table>
Real-World Evidence Heat Map

To gain a better understanding of the activity of RWE application across the TPLC, a heat map was developed using case studies shared by stakeholders and or collected during research.

RWE Applications Across Total Product Lifecycle

<table>
<thead>
<tr>
<th>Disease Area</th>
<th>Ideation & Discovery</th>
<th>Invention & Prototyping</th>
<th>Pre-Clinical</th>
<th>Trial Design</th>
<th>Feasibility</th>
<th>Pre-Market Comparative Effectiveness</th>
<th>De Novo Classification</th>
<th>Cost-Effectiveness</th>
<th>Post-Market Safety and/or Effectiveness</th>
<th>Post-Market Comparative Effectiveness</th>
<th>Effectiveness in Subpop.</th>
<th>Applications in Patient Care</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesiology, General Hospital, Respiratory, Infection Control, and Dental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>4</td>
<td>26</td>
<td>4</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>4</td>
<td>26</td>
<td>4</td>
<td>9</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>Cross-Cutting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>In Vitro Diagnostics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Neurological And Physical Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Ophthalmic and Ear, Nose, and Throat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Orthopedics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reproductive, Gastro-Renal, and Urological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Surgical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Sum of Number of Cases (color) broken down by TPLC Phase vs. Disease Area.
Early Findings: Emerging Gaps

The interim landscape analysis has pinpointed several emerging gap areas that may benefit from future demonstration projects.

- **RWE Across the Pre-Market**: There is an opportunity to incorporate RWE across the pre-market. Current activities are concentrated in the post-market areas. Feeding information gained through the post-market into the pre-market will help condense the TPLC, and potentially remove pre- and post-market distinctions.

- **Data Integration and UDI Implementation**: UDI remains key to data integration. The removal of data silos will help with further use of RWE as more data is available for investigation.

- **Data Access and Cost**: Clear understanding on the cost to access RWE, sharing agreements to access data, and reduction of data costs will help increase the adoption of RWE.

- **Patient and Data Privacy**: Patient buy-in is essential to the availability and implementation of RWE. Securing and protecting Patient data and privacy is paramount.

- **Engaging Payers**: Payers have important RWD related to the care and outcomes of patients that can help improve future devices. Communicating the value of RWE will help improve access to RWD.
What Does This Mean for You?

How can NEST benefit your organization or stakeholder constituencies?

<table>
<thead>
<tr>
<th>Patients</th>
<th>Government</th>
<th>Clinicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early engagement to guide product development and regulatory expectations</td>
<td>Higher quality regulatory submissions for product approval and reimbursement</td>
<td>“One-stop shop” for safety and efficacy information</td>
</tr>
<tr>
<td>Hospitals</td>
<td>Payers</td>
<td>Device Industry</td>
</tr>
<tr>
<td>Higher quality products for patients</td>
<td>Reduced health care costs due to higher quality products</td>
<td>Reduced costs of product development and total time to decision, and better assurance to patient safety</td>
</tr>
<tr>
<td>Research Organizations</td>
<td>Mission-Focused Investors</td>
<td>Other Professional Organizations</td>
</tr>
<tr>
<td>Increased access to high-quality audited data and leading medical device research</td>
<td>Improved medical devices on the market to solve pressing health needs</td>
<td>Better achieve mission goals of developing safe and effective medical devices</td>
</tr>
</tbody>
</table>

www.NESTcc.org
Learn More about MDIC and NEST

Visit our website at: http://mdic.org